8 resultados para Tb4O7
Resumo:
X-ray photoelectron spectroscopy has been employed to investigate oxides of second- and third-row transition metals, including those of rare earths. Systematics in the spin—orbit splittings and binding energies of core levels of the metals are described. In most of the cases studied, the dependence of the spin—orbit splittings on the atomic number Z is given by the relation ΔE = a(Z - Z0)4, where a is the quantum defect parameter and Z0 is the effective screening. Core-level binding energies are found to increase with the oxidation state of the metal. Most of the core-level binding energies are related to the atomic number Z by the expression E = x(Z - Z0)2, giving rise to linear plots of ln E versus ln Z. Specific features of individual oxides, with respect to satellites, multiplet structure, configuration mixing, and other properties are also discussed. The spectra of PrO2, Pr6O11, TbO2 and Tb4O7 are reported for the first time.
Resumo:
采用溶胶 凝胶法用不同纯度的Tb4O7在非还原气氛下合成了Tb3Al5O12,并研究了最佳合成条件、电子能谱以及发光性质。结果表明:Tb3Al5O12最佳合成时间应不超过3h,最佳合成温度不超过900℃,提高Tb4O7的纯度,Tb3Al5O12中Tb3+的发光明显增强。
Resumo:
To obtain high efficiency luminescent materials, the system Al2O3-B2O3 containing Ce3+ and Tb3+ ions with variation of B2O3-content, has been prepared by Al2O3, H3BO3, CeO2 and Tb4O7 under reducing atmosphere at 1250(j)ae. It is notable that the brightness of the sample with appropriate composition is similar to that of commercial phosphorous containing Ce3+ and Tb3+, indicating that a new high efficency green luminescent material was obtained with appropriate B2O3-content.
Resumo:
Solid-state compounds of general formula LnL(3)center dot nH(2)O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere.On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200 degrees C occurs with the formation of the respective oxide, Tb4O7 and Ln(2)O(3) (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol(-1), respectively.
Resumo:
Solid-state heavier lanthanides fumarates compounds have been synthesized, and the compounds were characterized by employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), TG coupled to FTIR, elemental analysis, and complexometry. On heating, the dehydration occurs in a single and two consecutive steps and the thermal decomposition of the anhydrous compounds occurs in consecutive and/or overlapping steps, with formation of the respective oxides: Tb4O7 and Ln2O3 (Ln=Dy to Lu). The results also led to information about composition, thermal behavior, and the type of coordination of the isolated compounds. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Thermal and spectroscopic studies on solid trivalent lanthanides and yttrium(III) α-hydroxyisobutyrates, Ln(C4H7O 3)3·nH2O were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA), elemental analysis, X-ray diffractometry, complexometry, experimental and theoretical infrared spectroscopy and TG-DSC coupled to FTIR. The dehydration of lanthanum to neodymium and terbium to thulium and yttrium compounds occurs in a single step while for samarium, europium and gadolinium ones it occurs in three consecutives steps. Ytterbium and lutetium compounds were obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occursin two consecutives steps, except lanthanum (five steps) and cerium (single step), with formation of the respective oxides CeO2, Pr6O 11, Tb4O7 and Ln2O3 (Ln = La, Nd to Lu and Y), as final residue. The resultsalso provided information concerning the composition, thermal behavior, crystallinity and gaseous products evolved during the thermal decomposition. The theoretical and experimental spectroscopic data suggested the possible modes of coordination of the ligand with the lanthanides.© 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)