258 resultados para Tb3


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu3+ = 1, Tb3+ = 2, and Gd3+ = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {Eu(L)(3)(H2O)(2)]}(n) (1) and {Tb(L)(3)(H2O)]center dot(H2O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb3+ emission (Phi(overall) = 64%) thanks to the favorable position of the triplet state ((3)pi pi*) of the ligand the energy difference between the triplet state of the ligand and the excited state of Tb3+ (Delta E) = (3)pi pi* - D-5(4) = 3197 cm(-1)], as investigated in the Gd3+ complex. On the other hand, the corresponding Eu3+ complex shows weak luminescence efficiency (Phi(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (Delta E = (3)pi pi* - D-5(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu3+ and Tb3+ ions with the general formula {Eu0.5Tb0.5(L)(3)(H2O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb3+ and Eu3+ in a mixed lanthanide system (eta = 86%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we present the discovery of a metallo-organogel derived from a Tb3+ salt and sodium deoxycholate (NaDCh) in methanol. The gel was made luminescent through sensitization of Tb3+ by doping with 2,3-dihydroxynaphthalene (DHN) in micromolar concentrations. Rheological measurements of the mechanical properties of the organogel confirmed the characteristics of a true gel. Significant quenching of Tb3+ luminescence was observed in the deoxycholate gel matrix by 2,4,7-trinitrofluorenone (TNF), but not by several other polynitro aromatics. Microscopic studies (AFM, TEM and SEM) revealed a highly entangled fibrous network. The xerogels retained luminescent properties suggesting the possibility for application in coatings, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and Tb3+ (1-10 mol%) doped CeO2 nanophosphors were synthesized by low temperature solution combustion method. The combustion derived products were well studied by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and Ultraviolet visible (UV-Vis) characterizations. The thermoluminescence (TL) glow curves of CeO2: Tb3+ (1-10 mol%) nanophosphors exposed to c source (60Co) for various doses were discussed for the first time. Two TL glow peaks recorded at 182 and 262 degrees C respectively. The TL intensity at 262 degrees C peak increases linearly in the dose range 0.5-7 kGy. Further, this peak was well defined, intense and glow peak structure does not change with c-dose as a result, it was quite useful in TL dosimetry of ionizing radiations. The kinetic parameters associated with the glow peak were estimated using Chen's half width method. The photoluminescence emission (PLE) spectra consists of characteristic peaks at 544 and 655 nm which were attributed to D-5(4) -> F-7(5) and D-5(4) -> F-7(2) transitions of Tb3+ ions. The optimal concentration of Tb3+ ions was found to be 7 mol%. The color co-ordinates of CeO2: Tb3+ (1-10 mol%) located in green region. Hence, this phosphor was quite useful for display applications. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study involves synthesis of a series of Tb3+ doped ZrO2 nanophosphors by solution combustion method using oxalyl dihydrazide as fuel. The as-formed ZrO2:Tb3+ nanophosphors having different concentrations of Tb3+ (1-11 mol%) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible spectroscopic techniques and the materials were subjected to photoluminescence and photocatalytic dye decolorization studies. The PXRD analysis indicates the formation of tetragonal symmetry up to 5 mol% concentration of Tb3+. Further increase in Tb3+ concentration has lead to cubic phase formation and the same was confirmed by Rietveld refinement analysis. SEM images revealed that material was highly porous in nature comprising of large voids and cracks with irregular morphology. TEM and SAED images clearly confirm the formation of high quality tetragonal nanocrystals. The emissive properties of nanophosphors were found to be dependent on Tb3+ dopant concentration. The green emission of the material was turned to white emission with the increase of Tb3+ ion concentration. The photocatalytic activities of these nanophosphors were probed for the decolorization of Congo red under UV and Sunlight irradiation. All the photocatalysts showed enhanced activity under UV light compared to Sunlight. The photocatalyst with 7 mol% Tb3+ showed enhanced activity attributed to effective separation of charge carriers due to phase transformation from tetragonal to cubic. The influence of crystallite size and PL on charge carrier trapping-recombination dynamics was investigated. The study successfully demonstrates synthesis of tetragonal and cubic ZrO2:Tb3+ green nanophosphors with superior photoluminescence and photocatalytic activities. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B-2(0) and the magnetic exchange interaction was studied as temperature approaches to 0 K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B-2(0) approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substances such as TbCo5, Tb2Co17 and Tb2Fe14B compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag nanoparticle embedded NaYF4:0.05Tb center dot chi Ce/ PVP (PVP stands for poly(vinyl pyrrolidone)) composite nanofibers have been prepared by electrospinning. A field emission scanning electron microscope and x-ray diffraction have been utilized to characterize the size, morphology and structure of the as-prepared electrospun nanofibers. Obvious photoluminescence (PL) of NaYF4:0.05Tb center dot 0.05Ce/PVP electrospun nanofibers due to the efficient energy transfer from Ce3+ to Tb3+ ions is observed. The PL intensity of the electrospun nanofibers decreases gradually with the addition of Ag nanoparticles. No obvious surface plasmon resonance enhanced luminescence is observed. The reasons for the weakening of the emission intensity with the addition of Ag nanoparticles have also been discussed in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up-conversion luminescence characteristics under 975 nm excitation have been investigated with Tb3+/Tm3+/Yb3+ triply doped tellurite glasses. Here, green (547 nm: D-5(4) --> F-7(4)) and red (660 nm: D-5(4) --> F-7(2)) up-conversion (UC) luminescence originating from Tb3+ is observed strongly, because of the quadratic dependences of emission intensities on the excitation power. Especially, the UC luminescence was intensified violently with the energy transfer from the Tm3+ ions involves in the Tb3+ excitation. To the Tb3+/Tm3+/Yb3+ triply doped glass system, a novel up-conversion mechanism is proposed as follows: the energy of (3)G(4) level (Tm3+) was transferred to D-5(4) (Tb3+) and the 477-nm UC luminescence of Tm3+ was nearly quenched. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphate glasses 60P<inf>2</inf>O<inf>5</inf>-15CS<inf>2</inf>O- 15Al<inf>2</inf>O<inf>3</inf>-10BaO were made by high temperature melt-annealing method. The absorption spectra, excitation spectra and emission spectra of Gd<sup>3+</sup>-Tb<sup>3+</sup> and Ce<inf>3+</inf>-Gd<sup>3+</sup>-Tb<sup>3+</sup> co-doped phosphate glass 60P<inf>2</inf>O<inf>5</inf>-15CS<inf>2</inf>O- 15Al<inf>2</inf>O<inf>3</inf>-10BaO were studied. The experimental results indicate that, the doping of Ce<inf>3+</inf> and Gd<sup>3+</sup> in Tb<sup>3+</sup> phosphate glass has a good effect on the 545 nm emission of Tb<sup>3+</sup> at UV excitation. The Ce<inf>3+</inf>-Gd<sup>3+</sup>-Tb<sup>3+</sup> co-doped phosphate glass have a good x-ray luminescence at the radiation of x-ray with energy in 50-120 kev, and a high space resolution. The Ce<inf>3+</inf>-Gd<sup>3+</sup>-Tb<sup>3+</sup> co-doped phosphate luminescence glass is a promising material for using in the digital radiography system in medical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and optical properties of Y3Al5O12:Tb3+ phosphors are reported in this paper. Y3Al5O12:Tb3+ phosphors were synthesized by a facile solution combustion method. Citric acid traps the constituent cations and also acts as a fuel. Y3Al5O12 (YAG) phase can crystallize through sintering at 900 degrees C for 2 h, and there were no intermediate phases such as YAlO3 (YAP) and Y4Al2O9 (YAM) in the sintering process. The excitation spectra of crystalline Y3Al5O12:Tb3+ are different from that of amorphous one due to the crystal field effect. The emission spectra mainly show D-5(4) -> F-7(6) transition under UV excitation. The higher concentration quenching in Y3Al5O12:Tb3+ nanophosphors may be due to the confinement effect on resonant energy transfer of nanocrystalline. It is also indicated that the solution combustion synthesis method provides a good distribution of Tb3+ activators in Y3Al5O12 host. (c) 2005 Published by Elsevier B.V.