972 resultados para Taxonomic revision
Resumo:
The three genera of smut fungi, Ustilago, Sporisorium and Macalpinomyces, form a complex that has eluded resolution by morphology (Langdon & Fullerton 1975, Vánky 1991, Piepenbring et al. 1998) and molecular phylogenetic analysis (Stoll et al. 2003, 2005). Two suggestions to reconcile the taxonomy of the complex have been proposed. The first was to break up the current taxa into several smaller genera and subgenera, and the second to unify the three genera into a single genus, Ustilago (Vánky 2002, Piepenbring 2004). The former solution is dependent on finding morphological synapomorphies that can delimit the genera, and the latter solution dismisses the wide morphological diversity within the group (McTaggart et al. 2012b). Synapomorphic morphological characters and host plant classification delimited clades in the Ustilago-Sporisorium-Macalpinomyces complex (McTaggart et al. 2012a). The current study defines these synapomorphic characters and proposes a new classification for many species currently placed in Ustilago, Sporisorium and Macalpinomyces. This approach preserves the well-known genera Ustilago, Sporisorium and Macalpinomyces, and enables the classification to reflect morphological diversity in the complex.
Resumo:
Hitherto, the Malaconothridae contained Malaconothrus Berlese, 1904 and Trimalaconothrus Berlese, 1916, defined by the possession of one pre-tarsal claw (monodactyly) or by three claws (tridactyly) respectively. However, monodactyly is a convergent apomorphy within the Oribatida and an unreliable character for a classification. Therefore we undertook a phylogenetic analysis of 102 species as the basis for a taxonomic review of the Malaconothridae. We identified two major clades, equivalent to the genera Tyrphonothrus Knülle, 1957 and Malaconothrus. These genera are redefined. Trimala-conothrus becomes the junior subjective synonym of Malaconothrus. Some 42 species of Trimalaconothrus are recom-bined to Malaconothrus and 15 species to Tyrphonothrus. Homonyms created by the recombinations are rectified. The replacement name M. hammerae nom. nov. is proposed for M. angulatus Hammer, 1958, the junior homonym of M. an-gulatus (Willmann, 1931) and the replacement name M. luxtoni nom. nov. is proposed for M. scutatus Luxton, 1987, the junior homonym of M. scutatus Mihelč ič, 1959. Trimalaconothrus iteratus Subías, 2004 is an unnecessary replacement name and is a junior objective synonym of Malaconothrus longirostrum (Hammer 1966). Malaconothrus praeoccupatus Subías, 2004 is a junior objective synonym of M. machadoi Balogh & Mahunka, 1969. Malaconothrus obsessus (Subías, 2004), an unnecessary replacement name for Trimalaconothrus albulus Hammer 1966 sensu Tseng 1982, becomes an available name for what is in fact a previously-undescribed species of Malaconothrus. We describe four new species of Tyrphonothrus: T. gnammaensis sp. nov. from Western Australia, T. gringai sp. nov. and T. maritimus sp. nov. from New South Wales, and T. taylori sp. nov. from Queensland. We describe six new species of Malaconothrus: M. beecroftensis sp. nov., M. darwini sp. nov. M. gundungurra sp. nov. and M. knuellei sp. nov. from New South Wales, M. jowettae sp. nov. from Norfolk Island, and M. talaitae sp. nov. from Victoria.
Resumo:
Morphological characters within the Ustilago-Sporisorium-Macalpinomyces complex are defined explicitly. The genera Sporisorium and Anthracocystis are emended to reflect morphological synapomorphies. Three new genera, Langdonia, Stollia and Triodiomyces are described based on soral synapomorphies and host classification. The new classification of the Ustilago-Sporisorium-Macalpinomyces complex incorporates 142 new taxonomic combinations.
Resumo:
The genus Pseudostegana is revised, with descriptions of 20 new species from Southeast Asia: P. angustifasciata Chen and Wang, sp. n., P. atrofrons Chen and Toda, sp. n., P. bifasciata Chen and Toda, sp. n., P. bisetosa Chen and Toda, sp. n., P. curvata Chen and Toda, sp. n., P. dactylis Chen and Toda, sp. n., P. dolichopoda Chen and Wang, sp. n., P. hamata Chen and Toda, sp. n., P. latifasciata Chen and Toda, sp. n., P. leptoptera Chen and Toda, sp. n., P. melanogaster Chen and Toda, sp. n., P. melanopogonias Chen and Toda, sp. n., P. myrmecoformis Chen and Toda, sp. n., P. nitidifrons Chen and Wang, sp. n., P. nitidiventris Chen and Toda, sp. n., P. orbicapitata Chen and Toda, sp. n., P. oxycephala Chen and Toda, sp. n., P. pallidimaculata Chen and Wang, sp. n., P. philoga Chen and Wang, sp. n. and P xanthoptera Chen and Wang, sp. n. On the basis of the wing patterns, six species-groups are established: the atrofrons, grandipalpis, fleximediata, javana, latiparma and zonaria groups. A key to the all species of this genus is provided.
Resumo:
A polyphasic approach was used to clarify the taxonomy of the water-bloom-forming oscillatorioid cyanobacteria. Seventy-five strains of oscillatorioid cyanobacteria were characterized by 16S rDNA sequence analysis, DNA base composition, DNA-DNA hybridization, fatty acid composition, phycobilin pigment composition, complementary chromatic adaptation, morphological characters, growth temperature and salinity tolerance. Phylogenetic analysis based on 165 rDNA sequences divided the strains into six groups, all of which were clearly separated from the type species of the genus Oscillatoria, Oscillatoria princeps Gomont NIVA CYA 150. Therefore, these strains should be classified into genera other than Oscillatoria. Groups I-III were closely related to one another and groups IV-VI were distinct from one another and from groups I to III. Group I was further divided into two subgroups, group I-pc, which includes strains containing only phycocyanin (PC), and group I-pe, which includes strains containing large amounts of phycoerythrin (PE) in addition to PC. This phenotypic distinction was supported by DNA-DNA hybridization studies. Based on the properties examined herein and data from traditional, botanical taxonomic studies, the groups and subgroups were classified into single species and we propose either emended or new taxonomic descriptions for Planktothrix agardhii (type strain NIES 204(T)), Planktothrix rubescens (type strain CCAP 1459/22(T)) Planktothrix pseudagardhii sp. nov. (type strain T1-8-4(T)), Planktothrix mougeotii (type strain TR1-5(T)), Planktothricoides raciborskii gen. nov., comb. nov. (type strain NIES 207(T)), Tychonema bourrellyi (type strain CCAP 1459/11B(T)) and Limnothrix redekei (type strain NIVA CYA 277/1(T)).
Resumo:
The species related to Vriesea paraibica (Bromeliaceae, Tillandsioideae) have controversial taxonomic limits. For several decades, this group has been identified in herbarium collections as V. x morreniana, an artificial hybrid that does not grow in natural habitats. The aim of this study was to assess the morphological variation in the V. paraibica complex through morphometric analyses of natural populations. Two sets of analyses were performed: the first involved six natural populations (G1) and the second was carried out on taxa that emerged from the first analysis, but using material from herbarium collections (G2). Univariate ANOVA was used, as well as discriminant analysis of 16 morphometric variables in G1 and 18 in G2. The results of the analyses of the two groups were similar and led to the selection of diagnostic traits of four species. Lengths of the lower and median floral bracts were significant for the separation of red and yellow floral bracts. Vriesea paraibica and V. interrogatoria have red bracts; these two species are differentiated by the widths of the lower and median portions of the inflorescence and by scape length. These structures are larger in the former and smaller in the latter. Of the species with yellow floral bracts, V. eltoniana is distinguished by longer leaf blades and scapes and V. flava is characterized by its shorter sepal lengths. (C) 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159, 163-181.
Resumo:
Hylidae is a large family of American, Australopapuan, and temperate Eurasian treefrogs of approximately 870 known species, divided among four subfamilies. Although some groups of Hylidae have been addressed phylogenetically, a comprehensive phylogenetic analysis has never been presented. The first goal of this paper is to review the current state of hylid systematics. We focus on the very large subfamily Hylinae (590 species), evaluate the monophyly of named taxa, and examine the evidential basis of the existing taxonomy. The second objective is to perform a phylogenetic analysis using mostly DNA sequence data in order to (1) test the monophyly of the Hylidae; (2) determine its constituent taxa, with special attention to the genera and species groups which form the subfamily Hylinae, and c) propose a new, monophyletic taxonomy consistent with the hypothesized relationships. We present a phylogenetic analysis of hylid frogs based on 276 terminals, including 228 hylids and 48 outgroup taxa. Included are exemplars of all but 1 of the 41 genera of Hylidae (of all four nominal subfamilies) and 39 of the 41 currently recognized species groups of the species-rich genus Hyla. The included taxa allowed us to test the monophyly of 24 of the 35 nonmonotypic genera and 25 species groups of Hyla. The phylogenetic analysis includes approximately 5100 base pairs from four mitochondrial (12S, tRNA valine, 16S, and cytochrome b) and five nuclear genes (rhodopsin, tyrosinase, RAG-1, seventh in absentia, and 28S), and a small data set from foot musculature. Concurring with previous studies, the present analysis indicates that Hemiphractinae are not related to the other three hylid subfamilies. It is therefore removed from the family and tentatively considered a subfamily of the paraphyletic Leptodactylidae. Hylidae is now restricted to Hylinae, Pelodryadinae, and Phyllomedusinae. Our results support a sister-group relationship between Pelodryadinae and Phyllomedusinae, which together form the sister taxon of Hylinae. Agalychnis, Phyllomedusa, Litoria, Hyla, Osteocephalus, Phrynohyas, Ptychohyla, Scinax, Smilisca, and Trachycephalus are not monophyletic. Within Hyla, the H. albomarginata, H. albopunctata, H. arborea, H. boons, H. cinerea, H. eximia, H. geographica, H. granosa, H. microcephala, H. miotympanum, H. tuberculosa, and H. versicolor groups are also demonstrably nonmonophyletic. Hylinae is composed of four major clades. The first of these includes the Andean stream-breeding Hyla, Aplastodiscus, all Gladiator Frogs, and a Tepuian clade. The second clade is composed of the 30-chromosome Hyla, Lysapsus, Pseudis, Scarthyla, Scinax (including the H. uruguaya group), Sphaenorhynchus, and Xenohyla. The third major clade is composed of Nyctimantis, Phrynohyas, Phyllodytes, and all South American/West Indian casque-headed frogs: Aparasphenodon, Argenteohyla, Corythomantis, Osteocephalus, Osteopilus, Tepuihyla, and Trachycephalus. The fourth major clade is composed of most of the Middle American/Holarctic species groups of Hyla and the genera Acris, Anotheca, Duellmanohyla, Plectrohyla, Pseudacris, Ptychohyla, Pternohyla, Smilisca, and Triprion. A new monophyletic taxonomy mirroring these results is presented where Hylinae is divided into four tribes. Of the species currently in Hyla, 297 of the 353 species are placed in 15 genera; of these, 4 are currently recognized, 4 are resurrected names, and 7 are new. Hyla is restricted to H. femoralis and the H. arborea, H. cinerea, H. eximia, and H. versicolor groups, whose contents are redefined. Phrynohyas is placed in the synonymy of Trachycephalus, and Pternohyla is placed in the synonymy of Smilisca. The genus Dendropsophus is resurrected to include all former species of Hyla known or suspected to have 30 chromosomes. Exerodonta is resurrected to include the former Hyla sumichrasti group and some members of the former H. miotympanum group. Hyloscirtus is resurrected for the former Hyla armata, H. bogotensis, and H. larinopygion groups. Hypsiboas is resurrected to include several species groups - many of them redefined here - of Gladiator Frogs. The former Hyla albofrenata and H. albosignata complexes of the H. albomarginata group are included in Aplastodiscus. New generic names are erected for (1) Agalychnis calcarifer and A. craspedopus; (2) Osteocephalus langsdorffii; the (3) Hyla aromatica, (4) H. bromeliacia, (5) H. godmani, (6) H. mixomaculata, (7) H. taeniopus, (8) and H. tuberculosa groups; (9) the clade composed of the H. pictipes and H. pseudopuma groups; and (10) a clade composed of the H. circumdata, H. claresignata, H. martinsi, and H. pseudopseudis groups. Copyright © American Museum of Natural History 2005.
Resumo:
Despite their great importance as pests of cultivated plants worldwide, members of the family Tetranychidae have never been subjected to a thorough cladistic analysis to reveal the history and relationships among related genera. Herein, we provide the first phylogenetic analysis and taxonomic review of species of the genera Aponychus, Paraponychus and Stylophoronychus using morphological characters. The results indicate a monophyletic clade uniting the aforementioned genera, although none of the three genera were recovered as monophyletic. We reinstate the tribe Aponychini as the taxon containing those three genera. Aponychus bambusae and A. aequilibris are herein considered junior synonyms of Stylophoronychus vannus and A. corpuzae, respectively. © 2013 CSIRO.