23 resultados para Taurocholate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 The disposition kinetics of [H-3] taurocholate ([H-3]TC) in perfused normal and cholestatic rat livers were studied using the multiple indicator dilution technique and several physiologically based pharmacokinetic models. 2 The serum biochemistry levels, the outflow profiles and biliary recovery of [H-3] TC were measured in three experimental groups: (i) control; (ii) 17α-ethynylestradiol (EE)-treated (low dose); and (iii) EE-treated (high dose) rats. EE treatment caused cholestasis in a dose-dependent manner. 3 A hepatobiliary TC transport model, which recognizes capillary mixing, active cellular uptake, and active efflux into bile and plasma described the disposition of [H-3]TC in the normal and cholestatic livers better than the other pharmacokinetic models. 4 An estimated five- and 18-fold decrease in biliary elimination rate constant, 1.7- and 2.7-fold increase in hepatocyte to plasma efflux rate constant, and 1.8- and 2.8-fold decrease in [H-3]TC biliary recovery ratio was found in moderate and severe cholestasis, respectively, relative to normal. 5 There were good correlations between the predicted and observed pharmacokinetic parameters of [H-3]TC based on liver pathophysiology (e.g. serum bilirubin level and biliary excretion of [H-3]TC). In conclusion, these results show that altered hepatic TC pharmacokinetics in cholestatic rat livers can be correlated with the relevant changes in liver pathophysiology in cholestasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: It is well established that the bile salt sodium taurocholate acts as a germinant for Clostridium difficile spores and the amino acid glycine acts as a co-germinant. The aim of this study was to determine whether any other amino acids act as co-germinants. Methods and Results: Clostridium difficile spore suspensions were exposed to different germinant solutions comprising taurocholate, glycine and an additional amino acid for 1 h before heating shocking (to kill germinating cells) or chilling on ice. Samples were then re-germinated and cultured to recover remaining viable cells. Only five amino acids out of the 19 common amino acids tested (valine, aspartic acid, arginine, histidine and serine) demonstrated co-germination activity with taurocholate and glycine. Of these, only histidine produced high levels of germination (97·9–99·9%) consistently in four strains of Cl. difficile spores. Some variation in the level of germination produced was observed between different PCR ribotypes, and the optimum concentration of amino acids with taurocholate for the germination of Cl. difficile NCTC 11204 spores was 10–100 mmol l-1. Conclusions: Histidine was found to be a co-germinant for Cl. difficile spores when combined with glycine and taurocholate. Significance and Impact of the Study: The findings of this study enhance current knowledge regarding agents required for germination of Cl. difficile spores which may be utilized in the development of novel applications to prevent the spread of Cl. difficile infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cholesterol-esterifying enzyme which incorporates exogenous fatty acids into cholesterol esters in the presence of ATP and coenzyme A was demonstrated in 15-day-old rat brain. This enzyme was maximally active at pH 7.4 and distinct from the cholesterol-esterifying enzyme reported earlier (Eto and Suzuki, 1971), which has a pH optimum at 5.2 and does not require cofactors. Properties of the two enzymes have been compared. Both the enzymes showed negligible esterification with acetate and were maximally active with oleic acid. The pH 5.2 enzyme esterified desmosterol, lanosterol and cholesterol at about the same rate, while the pH 7.4 enzyme was only 50% as active ith lanosterol as it was with cholesterol and desmosterol. Phosphatidyl serine stimulated the pH 5.2 enzyme but not the pH 7.4 enzyme. Phosphatidyl choline and sodium taurocholate showed no effect on either of the enzymes. Both the enzymes were associated with particulate fractions, but the pH 7.4 enzyme was localized more in the microsomes. Purified myelin showed 2.6-fold and 1.5-fold higher specific activities of pH 5.2 and 7.4 enzymes respectively, when compared with homogenate. About 7-10% of total activity of both the enzymes was associated with purified myelin. Brain stem and spinal cord showed higher specific activity of pH 5.2 enzyme than cerebral cortex and cerebellum, while pH 7.4 enzyme specific activity was higher in cerebellum and brain stem than in cerebral cortex and spinal cord. Microsomal pH 7.4 activity showed progressive increase prior to the active period of myelination, reaching a maximum on the 15th day after birth and declined to 20% of the peak activity by 30 days. In contrast, pH 5.2 enzyme reached maximum activity about the 6th day after birth and remained at this level well into adulthood. In 15-day-old rat brain, pH 7.4 enzyme had five to six times higher specific activity than pH 5.2 enzyme, while in adults the activities were equal. The pH 7.4 enzyme showed a threefold higher specific activity than pH 5.2 enzyme in myelin from 15-day-old rats, but in adults the reverse was true. Key Words: Cholesterol esterifying enzymes-Developing rat brain-Myelination. Jagannatha H. M. and Sastry P. S. Cholesterol-esterifying enzymes in developing rat brain. J. Neurochem. 36, 1352- 1360 (1981).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La proprotéine convertase subtilisine/kexine type 9 (PCSK9) favorise la dégradation post-transcriptionnelle du récepteur des lipoprotéines de faible densité (LDLr) dans les hépatocytes et augmente le LDL-cholestérol dans le plasma. Cependant, il n’est pas clair si la PCSK9 joue un rôle dans l’intestin. Dans cette étude, nous caractérisons les variations de la PCSK9 et du LDLr dans les cellules Caco-2/15 différentiées en fonction d’une variété d’effecteurs potentiels. Le cholestérol (100 µM) lié à l’albumine ou présenté en micelles a réduit de façon significative l’expression génique (30%, p<0,05) et l’expression protéique (50%, p<0,05) de la PCSK9. Étonnamment, une diminution similaire dans le LDLr protéique a été enregistrée (45%, p<0,05). Les cellules traitées avec le 25-hydroxycholestérol (50 µM) présentent également des réductions significatives dans l’ARNm (37%, p<0,01) et la protéine (75%, p<0,001) de la PCSK9. Une baisse des expressions génique (30%, p<0,05) et protéique (57%, p<0,01) a également été constatée dans le LDLr. Des diminutions ont aussi été observées pour la HMG CoA réductase et la protéine liant l’élément de réponse aux stérols SREBP-2. Il a été démontré que le SREBP-2 peut activer transcriptionnellement la PCSK9 par le biais de la liaison de SREBP-2 à son élément de réponse aux stérols situé dans la région proximale du promoteur de la PCSK9. Inversement, la déplétion du contenu cellulaire en cholestérol par l’hydroxypropyl-β-cyclodextrine a augmenté l’expression génique de la PCSK9 (20%, p<0,05) et son contenu protéique (540%, p<0,001), en parallèle avec les niveaux protéiques de SREBP-2. L’ajout des acides biliaires taurocholate et déoxycholate dans le milieu apical des cellules intestinales Caco-2/15 a provoqué une baisse d’expression génique (30%, p<0,01) et une hausse d’expression protéique (43%, p<0,01) de la PCSK9 respectivement, probablement via la modulation du FXR (farnesoid X receptor). Ces données combinées semblent donc indiquer que la PCSK9 fonctionne comme un senseur de stérols dans le petit intestin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meal fatty acids have been shown to modulate the size and composition of triacylglycerol (TAG)-rich lipoproteins influencing the magnitude and duration of the postprandial plasma TAG response. As a result there is considerable interest in the origin of these meal fatty-acid induced differences in particle composition. Caco-2 cells were incubated over 4 days with fatty acid mixtures resembling the composition of saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA)-rich meals fed in a previous postprandial study to determine their impact on lipoprotein synthesis and secretion. The MUFA- and PUFA-rich mixtures supported greater intracellular TAG, but not cholesterol accumulation compared with the SFA-rich mixture (P < 0.001). The MUFA-rich mixture promoted significantly greater TAG and cholesterol secretion than the other mixtures and significantly more apolipoprotein B-100 secretion than the PUFA-rich mixture (P < 0.05). Electron microscopy revealed the SFA-rich mixture had led to unfavourable effects on cellular morphology, compared with the unsaturated fatty acid-rich mixtures. Our findings suggest the MUFA-rich mixture, may support the formation of a greater number of TAG-rich lipoproteins, which is consistent with indirect observations from our human study. Our electron micrographs are suggestive that some endocytotic uptake of MUFA-rich taurocholate micelles may promote greater lipoprotein synthesis and secretion in Caco-2 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulated intestinal fluids (SIFs) used to assay the solubility of orally administered drugs are typically based on a single bile salt; sodium taurocholate (STC). The aim of this study was to develop mimetic intestinal fluids with a closer similarity to physiological fluids than those reported to date by developing a mixed bile salt (MBS) system (STC, sodium glycodeoxycholate, sodium deoxycholate; 60:39:1) with different concentrations of lecithin, the preponderant intestinal phospholipid. Hydrocortisone and progesterone were used as model drugs to evaluate systematically the influence of SIF composition on solubility. Increasing total bile salt concentration from 0 to 30 mM increased hydrocortisone and progesterone solubility by 2- and ∼25-fold, respectively. Accordingly, higher solubilities were measured in the fed-state compared to the fasted-state SIFs. Progesterone showed the greatest increases in solubility in STC and MBS systems (2-7-fold) compared to hydrocortisone (no significant change; P>0.05) as lecithin concentration was increased. Overall, MBS systems gave similar solubility profiles to STC. In conclusion, the addenda of MBS and lecithin were found to be secondary to the influence of BS concentration. These data provide a foundation for the design of more bio-similar media for pivotal decision-guiding assays in drug development and quality control settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibitory effects of mate tea (MT), a beverage produced with leaves from Ilex paraguariensis, in vitro lipase activity and on obesity in obese mice models were examined. For the in vitro experiment, porcine and human pancreatic lipase (PL) activities were determined by measuring the rate of release of oleic acid from hydrolysis of olive oil emulsified with taurocholate, phospholipids, gum arabic, or polyvinyl alcohol. For the in vivo experiments, animals were fed with a standard diet (SD, n = 10) or high-fat diet (HFD, n = 30) for 16 weeks. After the first 8 weeks on the HFD, the animals were treated with 1 and 2 g/kg of body weight of MT. The time course of the body weight and obesity-related biochemical parameters were evaluated. The results showed that MT inhibited both porcine and human PL (half-maximal inhibitory concentration = 1.5 mg MT/ml) and induced a strong inhibition of the porcine lipase activity in the hydrolysis of substrate emulsified with taurocholate + phosphatidylcholine (PC) (83 +/- 3.8%) or PC alone (62 +/- 4.3%). MT suppressed the increases in body weight (P < 0.05) and decreased the serum triglycerides and low-density lipoprotein (LDL)-cholesterol concentrations at both doses (from 190.3 +/- 5.7 to 135.0 +/- 8.9 mg/dl, from 189.1 +/- 7.3 to 129.3 +/- 17.6 mg/dl; P < 0.05, respectively) after they had been increased by the HFD. The liver lipid content was also decreased by the diet containing MT (from 132.6 +/- 3.9 to 95.6 +/- 6.1 mg/g of tissue; P < 0.05). These results suggest that MT could be a potentially therapeutic alternative in the treatment of obesity caused by a HFD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To investigate the effect of the opioid blocker naltrexone in the inflammatory response in acute pancreatitis (AP). METHODS: Acute pancreatitis was induced in anesthetized male Wistar rats by retrograde injection of 2.5% sodium taurocholate diluted in 0.5ml saline into the main pancreatic duct. Animals were randomized to the following experimental groups: Control Group (n=9): animals received an intraperitoneal injection of saline solution (0.5ml), 15 minutes before the induction of AP. Naltrexone Group (n=9): animals received an intraperitoneal injection of naltrexone 0.5ml (15 mg/kg), 15 minutes before induction of AP. Peritoneal levels of TNF-alpha and serum levels of IL-6 and amylase were determined The volume of the ascitic fluid was also evaluated. Myeloperoxidase (MPO) activities were analyzed in homogenates of pulmonary tissue. RESULTS: There were no significant differences in the ascitic fluid volume, nor in TNF-alpha and IL-6 levels in the naltrexone group compared to controls. Treatment with naltrexone did not affect the lung MPO activity compared to control group. CONCLUSIONS: The opioid receptors don't play an important role in the pathogenesis of the inflammatory response in acute pancreatitis. If opioids affect leukocytes inflammatory signaling, there are no major implications in the pathogenesis of acute pancreatitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To investigate the effects of pentoxifylline (PTX) in experimental acute pancreatitis (AP) starting drug administration after the induction of the disease. METHODS: One hundred male Wistar rats were submitted to taurocholate-induced AP and divided into three groups: Group Sham: sham-operated rats, Group Saline: AP plus saline solution, and Group PTX: AP plus PTX. Saline solution and PTX were administered 1 hour after induction of AP. At 3 hours after AP induction, peritoneal levels of tumor necrosis factor (TNF)-alpha, and serum levels of interleukin (IL)-6 and IL-10 levels were assayed by Enzyme-Linked Immunosorbent Assay (ELISA). Determinations of lung myeloperoxidase activity (MPO), histological analysis of lung and pancreas, and mortality study were performed. RESULTS: PTX administration 1 hour after induction of AP caused a significant decrease in peritoneal levels of TNF-alpha and in serum levels of IL-6 and IL-10 when compared to the saline group. There were no differences in lung MPO activity between the two groups with AP. A decrease in mortality was observed in the PTX treatment compared to the saline group. CONCLUSIONS: Administration of PTX after the onset of AP decreased the systemic levels of proinflammatory cytokines, raising the possibility that there is an early therapeutic window for PTX after the initiation of AP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intrahepatic cholestasis of pregnancy may be complicated by fetal arrhythmia, fetal hypoxia, preterm labor, and, in severe cases, intrauterine death. The precise etiology of fetal death is not known. However, taurocholate has been demonstrated to cause arrhythmia and abnormal calcium dynamics in cardiomyocytes. To identify the underlying reason for increased susceptibility of fetal cardiomyocytes to arrhythmia, we studied myofibroblasts (MFBs), which appear during structural remodeling of the adult diseased heart. In vitro, they depolarize rat cardiomyocytes via heterocellular gap junctional coupling. Recently, it has been hypothesized that ventricular MFBs might appear in the developing human heart, triggered by physiological fetal hypoxia. However, their presence in the fetal heart (FH) and their proarrhythmogenic effects have not been systematically characterized. Immunohistochemistry demonstrated that ventricular MFBs transiently appear in the human FH during gestation. We established two in vitro models of the maternal heart (MH) and FH, both exposed to increasing doses of taurocholate. The MH model consisted of confluent strands of rat cardiomyocytes, whereas for the FH model, we added cardiac MFBs on top of cardiomyocytes. Taurocholate in the FH model, but not in the MH model, slowed conduction velocity from 19 to 9 cm/s, induced early after depolarizations, and resulted in sustained re-entrant arrhythmias. These arrhythmic events were prevented by ursodeoxycholic acid, which hyperpolarized MFB membrane potential by modulating potassium conductance. CONCLUSION: These results illustrate that the appearance of MFBs in the FH may contribute to arrhythmias. The above-described mechanism represents a new therapeutic approach for cardiac arrhythmias at the level of MFB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Infection of pancreatic necrosis in necrotizing pancreatitis increases the lethality of patients with acute pancreatitis. To examine mechanisms underlying this clinical observation, we developed and tested a model, in which primary infection of necrosis is achieved in taurocholate-induced pancreatitis in mice. METHODS Sterile necrosis of acute necrotizing pancreatitis was induced by retrograde injection of 4% taurocholate into the common bile duct of Balb/c mice. Primary infection of pancreatic necrosis was induced by coinjecting 10 colony-forming units of Escherichia coli. Animals were killed after 6, 12, 24, 48, and 120 hours, and pancreatic damage and pancreatitis-associated systemic inflammatory response were assessed. RESULTS Mice with pancreatic acinar cell necrosis had an increased bacterial concentration in all tissues and showed sustained bacteremia. Acute pancreatitis was induced only by coinjection of taurocholate and not by bacterial infection alone. Infection of pancreatic necrosis increased pancreatic damage and the pulmonary vascular leak. Serum glucose concentrations serving as a parameter of hepatic function were reduced in mice with infected pancreatic necrosis. CONCLUSIONS Primary infection of pancreatic necrosis with E. coli increases both pancreatic damage and pulmonary and hepatic complications in acute necrotizing pancreatitis in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clostridium difficile is the leading definable cause of nosocomial diarrhea worldwide due to its virulence, multi-drug resistance, spore-forming ability, and environmental persistence. The incidence of C. difficile infection (CDI) has been increasing exponentially in the last decade. Virulent strains of C. difficile produce either toxin A and/or toxin B, which are essential for the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect the bacterium, the toxins, or the toxin genes. These methods do not differentiate virulent C. difficile strains that produce active toxins from non-virulent strains that do not produce toxins or produce inactive toxins. Based on the knowledge that C. difficile toxins A and B cleave a substrate that is stereochemically similar to the native substrate of the toxins, uridine diphosphoglucose, a quantitative, cost-efficient assay, the Cdifftox activity assay, was developed to measure C. difficile toxin activity. The concept behind the activity assay was modified to develop a novel, rapid, sensitive, and specific assay for C. difficile toxins in the form of a selective and differential agar plate culture medium, the Cdifftox Plate assay (CDPA). This assay combines in a single step the specific identification of C. difficile strains and the detection of active toxin(s). The CDPA was determined to be extremely accurate (99.8% effective) at detecting toxin-producing strains based on the analysis of 528 C. difficile isolates selected from 50 tissue culture cytotoxicity assay-positive clinical stool samples. This new assay advances and improves the culture methodology in that only C. difficile strains will grow on this medium and virulent strains producing active toxins can be differentiated from non-virulent strains. This new method reduces the time and effort required to isolate and confirm toxin-producing C. difficile strains and provides a clinical isolate for antibiotic susceptibility testing and strain typing. The Cdifftox activity assay was used to screen for inhibitors of toxin activity. Physiological levels of the common human conjugated bile salt, taurocholate, was found to inhibit toxin A and B in vitro activities. When co-incubated ex vivo with purified toxin B, taurocholate protected Caco-2 colonic epithelial cells from the damaging effects of the toxin. Furthermore, using a caspase-3 detection assay, taurocholate reduced the extent of toxin B-induced Caco-2 cell apoptosis. These results suggest that bile salts can be effective in protecting the gut epithelium from C. difficile toxin damage, thus, the delivery of physiologic amounts of taurocholate to the colon, where it is normally in low concentration, could be useful in CDI treatment. These findings may help to explain why bile rich small intestine is spared damage in CDI, while the bile salt poor colon is vulnerable in CDI. Toxin synthesis in C. difficile occurs during the stationary phase, but little is known about the regulation of these toxins. It was hypothesized that C. difficile toxin synthesis is regulated by a quorum sensing mechanism. Two lines of evidence supported this hypothesis. First, a small (KDa), diffusible, heat-stable toxin-inducing activity accumulates in the medium of high-density C. difficile cells. This conditioned medium when incubated with low-density log-phase cells causes them to produce toxin early (2-4 hrs instead of 12-16 hrs) and at elevated levels when compared with cells grown in fresh medium. These data suggested that C. difficile cells extracellularly release an inducing molecule during growth that is able to activate toxin synthesis prematurely and demonstrates for the first time that toxin synthesis in C. difficile is regulated by quorum signaling. Second, this toxin-inducing activity was partially purified from high-density stationary-phase culture supernatant fluid by HPLC and confirmed to induce early toxin synthesis, even in C. difficile virulent strains that over-produce the toxins. Mass spectrometry analysis of the purified toxin-inducing fraction from HPLC revealed a cyclic compound with a mass of 655.8 Da. It is anticipated that identification of this toxin-inducing compound will advance our understanding of the mechanism involved in the quorum-dependent regulation of C. difficile toxin synthesis. This finding should lead to the development of even more sensitive tests to diagnose CDI and may lead to the discovery of promising novel therapeutic targets that could be harnessed for the treatment C. difficile infections.