989 resultados para Tauberian Constants
Resumo:
Differences in the NMR detectability of 39K in various excised rat tissues (liver, brain, kidney, muscle, and testes) have been observed. The lowest NMR detectability occurs for liver (61 ± 3% of potassium as measured by flame photometry) and highest for erythrocytes (100 ± 7%). These differences in detectability correlate with differences in the measured 39K NMR relaxation constants in the same tissues. 39K detectabilities were also found to correlate inversely with the mitochondrial content of the tissues. Mitochondria prepared from liver showed greatly reduced 39K NMR detectability when compared with the tissue from which it was derived, 31.6 ± 9% of potassium measured by flame photometry compared to 61 ± 3%. The detectability of potassium in mitochondria was too low to enable the measurement of relaxation constants. This study indicates that differences in tissue structure, particularly mitochondrial content are important in determining 39K detectability and measured relaxation rates.
Resumo:
The quadrupole coupling constants (qcc) for39K and23Na ions in glycerol have been calculated from linewidths measured as a function of temperature (which in turn results in changes in solution viscosity). The qcc of39K in glycerol is found to be 1.7 MHz, and that of23Na is 1.6 MHz. The relaxation behavior of39K and23Na ions in glycerol shows magnetic field and temperature dependence consistent with the equations for transverse relaxation more commonly used to describe the reorientation of nuclei in a molecular framework with intramolecular field gradients. It is shown, however, that τc is not simply proportional to the ratio of viscosity/temperature (ηT). The 39K qcc in glycerol and the value of 1.3 MHz estimated for this nucleus in aqueous solution are much greater than values of 0.075 to 0.12 MHz calculated from T2 measurements of39K in freshly excised rat tissues. This indicates that, in biological samples, processes such as exchange of potassium between intracellular compartments or diffusion of ions through locally ordered regions play a significant role in determining the effective quadrupole coupling constant and correlation time governing39K relaxation. T1 and T2 measurements of rat muscle at two magnetic fields also indicate that a more complex correlation function may be required to describe the relaxation of39K in tissue. Similar results and conclusions are found for23Na.
Resumo:
Semi-rigid molecular tweezers 1, 3 and 4 bind picric acid with more than tenfold increment in tetrachloromethane as compared to chloroform.
Resumo:
Surface effect on the four independent elastic constants of nanohoneycombs is investigated in this paper. The axial deformation of the horizontal cell wall is included, comparing to the Gibson's method, and the contributions of the two components of surface stress (i.e. surface residual stress and surface elasticity) are discussed. The result shows that the regular hexagonal honeycomb is not isotropic but orthotropic. An increase in the cell-wall thickness t leads to an increase in the discrepancy of the Young's moduli in both directions. Furthermore, the surface residual stress dominates the surface effect on the elastic constants when t < 15 nm (or the relative density <0.17), which is in contrast to that the surface elasticity does when t > 15 nm (or the relative density > 0.17) for metal Al. The present structure and theory may be useful in the design of future nanodevices.
Resumo:
Plates with V-through edge notches subjected to pure bending and specimens with rectangular edge-through-notches subjected to combined bending and axial pull were investigated (under live-load and stress-frozen conditions) in a completely nondestructive manner using scattered-light photoelasticity. Stress-intensity factors (SIFs) were evaluated by analysing the singular stress distributions near crack-tips. Improved methods are suggested for the evaluation of SIFs. The thickness-wise variation of SIFs is also obtained in the investigation. The results obtained are compared with the available theoretical solutions.
Resumo:
Sodium nitrate is isostructural with calcite and crystallizes in the space group DQd. It is one of these substances whose physical properties have been widely investigated. However, a perusal of literature shows that the agreement between the elastic constants obtained by various investigators is not good.
Resumo:
The host-guest technique has been applied to the determination of the helix-coil stability constants of two naturally occurring amino acids, L-alanine and L-leucine, in a nonaqueous solvent system. Random copolymers containing L-alanine and L-leucine, respectively, as guest residues and -benzyl-L-glutamate as the host residue were synthesized. The polymers were fractionated and characterized for their amino acid content, molecular weight, and helix-coil transition behavior in a dichloroacetic acid (DCA)-1,2-dichloroethane (DCE) mixture. Two types of helix-coil transitions were carried out on the copolymers: solvent-induced transitions in DCA-DCE mixtures at 25°C and thermally induced transitions in a 82:18 (wt %) DCA-DCE mixture. The thermally induced transitions were analyzed by statistical mechanical methods to determine the Zimm-Bragg parameters, and s, of the guest residues. The experimental data indicate that, in the nonaqueous solvent, the L-alanine residue stabilizes the -helical conformation more than the L-leucine residue does. This is in contrast to their behavior in aqueous solution, where the reverse is true. The implications of this finding for the analysis of helical structures in globular proteins are discussed.
Resumo:
A formulation has been developed using perturbation theory to evaluate the π-contribution to the nuclear spin coupling constants involving nuclei at least one of which is an unsaturated center. This fromulation accounts for the π-contribution in terms of the core polarization and one-center exchange at the π-center. The formulation developed together with the Dirac vector model and Penney-Dirac bond-order formalisms was employed to calculate the geminal (two-bond) proton coupling constants of carboxyl carbons in α-disubstituted acetic acids. The calculated coupling constants were found to have an orientational dependence. The results of the calculation are in good agreement with the experimental values.
Resumo:
Infrared spectra of 1,3-dithiole-2-thione (DTT) and its four selenium analogues have been studied in the region 4000 to 20 cm�1. Assignment of all the fundamental frequencies was made by noting the band shifts on progressive selenation. Normal coordinate analysis procedures have been applied for both in-plane and out-of-plane vibrations to help the assignments. The Urey�Bradley force function supplemented with valence force constants for the out-of-plane vibrations was employed for coordinate calculations. A correlation of the infrared assignments of DTT with its different selenium analogues is accomplished. Further, the infrared assignments are compared with those of trithiocarbonate ion and its selenium analogues and other structurally related heterocyclic molecules.
Resumo:
From consideration of 'H-lH vicinal coupling constants and '"G'H long-range coupling constants in a series of amino acid derivatives, the precise values of uC component vicinal coupling constants have been calculated for the three minimum energy staggered rotamers for the C(or)H-C(P)H, side-chains of amino acids.