987 resultados para Tartrate-resistant acid phosphatase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tartrate-resistant acid phosphatase (TRAP) is a well-known marker of osteoclasts and bone resorption. Here we have investigated whether osteoblast-like cells (hFOB 1.19) present TRAP activity and how would be its pattern of expression during osteoblastic differentiation. We also observed how the osteoblastic differentiation affected the reduced glutathione levels. TRAP activity was measured using the p-nitrophenylphosphate substrate. The osteogenic potential of hFOB 1.19 cells was studied by measuring alkaline phosphatase activity and mineralized nodule formation. Oxidative stress was determined by HPLC and DNTB assays. TRAP activity and the reduced glutathione-dependent microenvironment were modulated during osteoblastic differentiation. During this phase, TRAP activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day, decreasing thereafter. We demonstrate that TRAP activity is modulated during osteoblastic differentiation, possibly in response to the redox state of the cell, since it seemed to depend on suitable levels of reduced glutathione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the new KDIGO (Kidney Disease Improving Global Outcomes) guidelines, the term of renal osteodystrophy, should be used exclusively in reference to the invasive diagnosis of bone abnormalities. Due to the low sensitivity and specificity of biochemical serum markers of bone remodelling,the performance of bone biopsies is highly stimulated in dialysis patients and after kidney transplantation. The tartrate-resistant acid phosphatase (TRACP) is an iso-enzyme of the group of acid phosphatases, which is highly expressed by activated osteoclasts and macrophages. TRACP in osteoclasts is in intracytoplasmic vesicles that transport the products of bone matrix degradation. Being present in activated osteoclasts, the identification of this enzyme by histochemistry in undecalcified bone biopsies is an excellent method to quantify the resorption of bone. Since it is an enzymatic histochemical method for a thermolabile enzyme, the temperature at which it is performed is particularly relevant. This study aimed to determine the optimal temperature for identification of TRACP in activated osteoclasts in undecalcified bone biopsies embedded in methylmethacrylate. We selected 10 cases of undecalcified bone biopsies from hemodialysis patients with the diagnosis of secondary hyperparathyroidism. Sections of 5 μm were stained to identify TRACP at different incubation temperatures (37º, 45º, 60º, 70º and 80ºC) for 30 minutes. Activated osteoclasts stained red and trabecular bone (mineralized bone) was contrasted with toluidine blue. This approach also increased the visibility of the trabecular bone resorption areas (Howship lacunae). Unlike what is suggested in the literature and in several international protocols, we found that the best results were obtained with temperatures between 60ºC and 70ºC. For technical reasons and according to the results of the present study, we recommended that, for an incubation time of 30 minutes, the reaction should be carried out at 60ºC. As active osteoclasts are usually scarce in a bone section, the standardization of the histochemistry method is of great relevance, to optimize the identification of these cells and increase the accuracy of the histomosphometric results. Our results, allowing an increase in osteoclasts contrast, also support the use of semi-automatic histomorphometric measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is a physiologically dynamic tissue being constantly regenerated throughout life as a consequence of bone turnover by bone-resorbing osteoclasts and bone-forming osteoblasts. In certain bone diseases, such as osteoporosis, the imbalance in bone turnover leads to bone loss and increased fracture risk. Measurement of bone mineral density (BMD) predicts the risk of fracture, but also biochemical markers of bone metabolism have been suggested to be suitable for prediction of fractures and monitoring the efficacy of antiresorptive treatment. Tartrate-resistant acid phosphatase 5b (TRACP 5b) is an enzyme released from osteoclasts into the circulation, from where it can be detected kinetically or immunologically. Conventional assays for serum total TRACP were spectrophotometric and suffered from interference by other acid phosphatases and non-osteoclastic TRACP 5a isoform. Our aim was to develop novel immunoassays for osteoclastic TRACP 5b. Serum TRACP 5b levels were elevated in individuals with high bone turnover, such as children, postmenopausal women, patients with osteoporosis, Paget’s disease and breast cancer patients with bone metastases. As expected, hormone replacement therapy (HRT) in postmenopausal women decreased the levels of serum TRACP 5b. Surprisingly, the highest TRACP 5b levels were observed in individuals with rare autosomal dominant osteopetrosis type II (ADO2), which is characterized by high BMD and fracture risk with simultaneously elevated levels of deficient osteoclasts. In ADO2 patients, elevated levels of serum TRACP 5b were associated with high fracture frequency. It is likely that serum TRACP 5b reflects the number of inactive osteoclasts in ADO2. Similar results supporting the hypothesis that TRACP 5b would reflect the number of osteoclasts instead of their activity were observed with cultured osteoclasts and in animal models. Novel TRACP 5b immunoassays may prove to be of value either as independent or combinatory tools with other bone metabolic markers and BMD measurements in clinical practice and bone research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertebral and metaphyseal dysplasia, spasticity with cerebral calcifications, and strong predisposition to autoimmune diseases are the hallmarks of the genetic disorder spondyloenchondrodysplasia. We mapped a locus in five consanguineous families to chromosome 19p13 and identified mutations in ACP5, which encodes tartrate-resistant phosphatase (TRAP), in 14 affected individuals and showed that these mutations abolish enzyme function in the serum and cells of affected individuals. Phosphorylated osteopontin, a protein involved in bone reabsorption and in immune regulation, accumulates in serum, urine and cells cultured from TRAP-deficient individuals. Case-derived dendritic cells exhibit an altered cytokine profile and are more potent than matched control cells in stimulating allogeneic T cell proliferation in mixed lymphocyte reactions. These findings shed new light on the role of osteopontin and its regulation by TRAP in the pathogenesis of common autoimmune disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tartraatti-resistentin happaman fosfataasin hiljentäminen RNAi menetelmällä: odottamaton vaikutus monosyytti-makrofagi linjan soluissa RNA interferenssi (RNAi) eli RNA:n hiljentyminen löydettiin ensimmäisenä kasveissa, ja 2000-luvulla RNAi menetelmä on otettu käyttöön myös nisäkässoluissa. RNAi on mekanismi, jossa lyhyet kaksi juosteiset RNA molekyylit eli siRNA:t sitoutuvat proteiinikompleksiin ja sitoutuvat komplementaarisesti proteiinia koodaavaan lähetti RNA:han katalysoiden lähetti RNA:n hajoamisen. Tällöin RNA:n koodaamaa proteiinia ei solussa tuoteta. Tässä työssä on RNA interferenssi menetelmän avuksi kehitetty uusi siRNA molekyylien suunnittelualgoritmi siRNA_profile, joka etsii lähetti RNA:sta geenin hiljentämiseen sopivia kohdealueita. Optimaalisesti suunnitellulla siRNA molekyylillä voi olla mahdollista saavuttaa pitkäaikainen geenin hiljeneminen ja spesifinen kohdeproteiinin määrän aleneminen solussa. Erilaiset kemialliset modifikaatiot, mm. 2´-Fluoro-modifikaatio, siRNA molekyylin riboosirenkaassa lisäsivät siRNA molekyylin stabiilisuutta veren plasmassa sekä siRNA molekyylin tehokkuutta. Nämä ovat tärkeitä siRNA molekyylien ominaisuuksia kun RNAi menetelmää sovelletaan lääketieteellisiin tarkoituksiin. Tartraatti-resistentti hapan fosfataasi (TRACP) on entsyymi, joka esiintyy luunsyöjäsoluissa eli osteoklasteissa, antigeenejä esittelevissä dendiriittisissä soluissa sekä eri kudosten makrofageissa, jotka ovat syöjäsoluja. TRACP entsyymin biologista tehtävää ei ole saatu selville, mutta oletetaan että TRACP entsyymin kyvyllä tuottaa reaktiivisia happiradikaaleja on tehtävä sekä luuta hajoittavissa osteoklasteissa sekä antigeenia esittelevissä dendriittisissä soluissa. Makrofageilla, jotka yliekpressoivat TRACP entsyymiä, on myös solunsisäinen reaktiivisten happiradikaalien tuotanto sekä bakteerin tappokyky lisääntynyt. TRACP-geenin hiljentämiseen tarkoitetut spesifiset DNA ja siRNA molekyylit aiheuttivat monosyytti-makrofagilinjan soluviljelymallissa TRACP entsyymin tuoton lisääntymistä odotusten vastaisesti. DNA ja RNA molekyylien vaikutusta TRACP entsyymin tuoton lisääntymiseen tutkittiin myös Tolllike reseptori 9 (TLR9) poistogeenisestä hiirestä eristetyissä monosyyttimakrofaagisoluissa. TRACP entsyymin tuoton lisääntyminen todettiin sekvenssistä ja TLR9:stä riippumattomaksi vasteeksi solun ulkopuolisia DNA ja RNA molekyylejä vastaan. Havainto TRACP entsyymin tuoton lisääntymisestä viittaa siihen, että TRACP entsyymillä on tehtävä solun immuunipuolustusjärjestelmässä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tartrate-resistant acid phosphatase (TRAP) is highly expressed in osteoclasts and in a subset of tissue macrophages and dendritic cells. It is expressed at lower levels in the parenchymal cells of the liver, glomerular mesangial cells of the kidney and pancreatic acinar cells. We have identified novel TRAP mRNAs that differ in their 5-untranslated region (5'-UTR) sequence, but align with the known murine TRAP mRNA from the first base of Exon 2. The novel 5'-UTRs represent alternative first exons located upstream of the known 5'-UTR. A similar genomic structure exists for the human TRAP gene with partial conservation of the exon and promoter sequences. Expression of the most distal 5'-UTR (Exon 1A) is restricted to adult bone and spleen tissue. Exon 1B is expressed primarily in tissues containing TRAP-positive nonhaematopoietic cells. The known TRAP 5'-UTR (Exon 1) is expressed in tissues characteristic of myeloid cell expression. In addition the Exon 1C promoter sequence is shown to comprise distinct transcription start regions, with an osteoclast-specific transcription initiation site identified downstream of a TATA-like element. Macrophages are shown to initiate transcription of the Exon 1C transcript from a purine-rich region located upstream of the osteoclast-specific transcription start point. The distinct expression patterns for each of the TRAP 5'-UTRs suggest that TRAP mRNA expression is regulated by the use of four alternative tissue- and cell-restricted promoters. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteolytic, cleavage in an exposed loop of human tartrate-resistant acid phosphatase (TRAcP) with trypsin leads to a significant increase in activity. At each pH value between 3.25 and 8.0 the cleaved enzyme is more active. Substrate specificity is also influenced by proteolysis. Only the cleaved form is able to hydrolyze unactivated substrates efficiently, and at pH > 6 cleaved TRAcP acquires a marked preference for ATP. The cleaved enzyme also has altered sensitivity to inhibitors. Interestingly, the magnitude and mode of inhibition by fluoride depends not only on the proteolytic state but also pH. The combined kinetic data imply a role of the loop residue D158 in catalysis in the cleaved enzyme. Notably, at low pH this residue may act as a proton donor for the leaving group. In this respect the mechanism of cleaved TRAcP resembles that of sweet potato purple acid phosphatase. (c) 2005 Elsevier Inc. Ail rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton's reaction. Previous Studies Suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign Compounds during. antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP +) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and Superoxide production. Nitric oxide production was increased in activated macrophages or WT mice, but not in TRACP+ mice, Macrophages from TRACP+ mice showed increased capacity or bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense systern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tartrate-resistant acid phosphatase (TRAP) is present in multiple tissues, including kidney, liver, lung, spleen, and bone. Recent study of (TRAP) gene expression has provided evidence for distinct promoters within the (TRAP) gene, suggesting that the gene has alternative, tissue-preferred mRNA transcripts. Examination of endogenous (TRAP) exon 1B and 1C mRNA transcripts revealed tissue-preferred transcript abundance with increased exon 1B transcripts detected in liver and kidney and increased exon 1C transcripts detected in bone and spleen. In this investigation, we have made transgenic mice that express a marker gene driven by two candidate promoters, designated BC and C, within the (TRAP) gene. The BC and C promoters are 2.2 and 1.6 kb, respectively, measured from the translation initiation site. Evaluation of BC transgenic lines demonstrated robust expression in multiple tissues. In contrast, significant transgene expression was not detected in C transgenic lines. Evaluation of transgene mRNAs in BC transgenic lines revealed that virtually all expression was in the form of B transcripts, suggesting that the tissue-preferred pattern of endogenous (TRAP) was not replicated in the BC transgenic line. Likewise, osteoclastogenic cultures from BC, but not C, transgenic bone marrow cells expressed the transgene following receptor activator of NFkappaB ligand/macrophage colony-stimulating factor stimulation. In conclusion, when compared with the 2.2-kb BC portion of the (TRAP) promoter region, the 1.6-kb C portion does not account for significant gene expression in vivo or in vitro; production of the bone- and spleen-preferred (TRAP) C transcript must depend on regulatory elements outside of the 2.2-kb promoter. As the majority of currently investigated transcription factors that influence transcriptional regulation of osteoclast gene expression bind within the 1.6-kb C portion of the (TRAP) promoter, it is likely that transcription binding sites outside of the 2.2-kb region will have profound effects on regulation of the gene in vivo and in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Mammalian purple acid phosphatases are highly conserved binuclear metal-containing enzymes produced by osteoclasts, the cells that resorb bone. The enzyme is a target for drug design because there is strong evidence that it is involved in bone resorption. Results: The 1.55 Angstrom resolution structure of pig purple acid phosphatase has been solved by multiple isomorphous replacement. The enzyme comprises two sandwiched beta sheets flanked by or-helical segments. The molecule shows internal symmetry, with the metal ions bound at the interface between the two halves. Conclusions: Despite less than 15% sequence identity, the protein fold resembles that of the catalytic domain of plant purple acid phosphatase and some serine/threonine protein phosphatases. The active-site regions of the mammalian and plant purple acid phosphatases differ significantly, however. The internal symmetry suggests that the binuclear centre evolved as a result of the combination of mononuclear ancestors. The structure of the mammalian enzyme provides a basis for antiosteoporotic drug design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the activities of the total acid phosphatase (TAP), tartrate-resistant acid phosphatase (TRAP), low molecular weight protein tyrosine phosphatase (LMW-PTP) and alkaline phosphatase (ALP) enzymes, as well as the possible correlation in the serum and in unstimulated whole saliva of children. Enzymatic activities were measured in pairs of concurrently obtained serum and salivary samples from 32 children in good oral and systemic health (16 of each sex) with a median age of 6.4 ± 3.3 years (range 1.08 – 12.92 years). All collections were made between the hours of 08:00 – 10:00 a.m. We used p-nitrophenyl phosphate as the substrate in the enzymatic assay for TAP, TRAP and LMW-PTP, and thymolphthalein monophosphate as the substrate for ALP. The enzymatic activities of all the studied enzymes were higher in serum than in saliva. The mean of enzymatic activities of serum TAP, TRAP, LMW-PTP and ALP were 36.51 ± 8.21, 23.99 ± 5.73, 11.16 ± 5.65 and 76.50 ± 17.32 U/L, respectively, while the mean salivary TAP, TRAP, LMW-PTP and ALP enzymatic activities were 9.60 ± 5.04, 1.36 ± 0.87, 5.65 ± 3.07 and 4.08 ± 1.83 U/L in this order. The TRAP revealed a positive linear correlation between its activity in the serum and saliva (Spearman r = 0,4685, p < 0,05). We concluded that the salivary TRAP has a potential to be use as biomarkers of pathologies and states that modify its activity in the serum.