979 resultados para Tarpon Bay Shark River Estuary


Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://digitalcommons.fiu.edu/fce_lter_photos/1261/thumbnail.jpg

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate tidal and seasonal variations in concentrations and fluxes of nitrogen (NH4 +, NO2+NO3, total nitrogen) and phosphorus (soluble reactive phosphorus, total phosphorus) in a riverine mangrove forest using the flume technique during the dry (May, December 2003) and rainy (October 2003) seasons in the Shark River Estuary, Florida. Tidal water temperatures during the sampling period were on average 29.4 (± 0.4) oC in May and October declining to 20 oC (± 4) in December. Salinity values remained constant in May (28 ± 0.12 PSU), whereas salinity in October and December ranged from 6‒21 PSU and 9‒25 PSU, respectively. Nitrate + nitrite (N+N) and NH4+ concentrations ranged from 0.0 to 3.5 μM and from 0 to 4.8 μM throughout the study period, respectively. Mean TN concentrations in October and December were 39 (±0.8) μM and 37 (±1.5) μM, respectively. SRP and N+N concentrations in the flume increased with higher frequency in flooding tides. TP concentrations ranged between 0.2‒2.9 μM with higher concentrations in the dry season than in the rainy season. Mean concentrations were <1. 5 μM during the sampling period in October (0.75 ± 0.02) and December (0.76 ± 0.01), and were relatively constant in both upstream and downstream locations of the flume. Water residence time in the flume (25 m2) was relatively short for any nutrient exchange to occur between the water column and the forest floor. However, the distinct seasonality in nutrient concentrations in the flume and adjacent tidal creek indicate that the Gulf of Mexico is the main source of SRP and N+N into the mangrove forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://digitalcommons.fiu.edu/fce_lter_photos/1281/thumbnail.jpg

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://digitalcommons.fiu.edu/fce_lter_photos/1260/thumbnail.jpg

Relevância:

100.00% 100.00%

Publicador:

Resumo:

JGOFS results showed that the ocean is a major sink for the increasing atmospheric carbon dioxide resulting from human activity. However, the role of the coastal seas in the global carbon cycling is poorly understood. In the present work, the inorganic carbon (IC) in the Yangtze River Estuary and Jiaozhou Bay are studied as examples of offshore sediments. Sequential extraction was used to divide inorganic carbon in the sediments into five forms, NaCl form, NH3 H2O form, NaOH form, NH2OH HCl form and HCl form. Studied of their content and influencing factors were also showed that NaCl form < NH3 H2O form < NaOH form < NH2OH HCl form < HCl form, and that their influencing factors of pH, Eh, Es, water content, organic carbon, organic nitrogen, inorganic nitrogen, organic phosphorus and inorganic phosphorus on inorganic carbon can be divided into two groups, and that every factor has different influence on different form or on the same form in different environment. Different IC form may transform into each other in the early diagenetic process of sediment, but NaCl form, NH3 H2O form, NaOH form and NH2OH HCl form may convert to HCl form ultimately. So every IC form has different contribution to carbon cycling. This study showed that the contribution of various form of IC to the carbon cycle is in the order of NaOH form > NH2OH HCl form > NH3 H2O form > NaCl form > HCl form, and that the contribution of HCl form contributes little to carbon cycling, HCl form may be one of end-result of atmospheric CO2. So Yangtze River estuary sediment may absorb at least about 40.96x10(11) g atmospheric CO2 every year, which indicated that offshore sediment play an important role in absorbing atmospheric CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early developmental stages of two Secutor species, Secutor insidiator (Bloch) (11.9-36.0 mm standard length, SL) and Secutor ruconius (Hamilton-Buchanan) (14.0-33.0 mm SL) collected by ichthyoplankton net from the Bak-khali river estuary of the Bay of Bengal, Cox's Bazar, Bangladesh are described and illustrated. All of the fins with supporting spines and rays were present in the smallest collected sizes of both species. With growth of the specimens, significant changes in melanophore patterns were found. S. insidiator is similar to S. ruconius in having upward protracting mouth parts and body colouration, but can be distinguished easily by its more elongate body shape (body depth 38-47% of SL compared with 46-52% of SL in Secutor ruconius). Both the species occurred round the year from August 1998 to July 1999. The surface water temperature and salinity during the study period varied from 22.0-32) C and 10-37 ppt respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, some results of analyzing the hydrographic characteristics of the seawater temperature and salinity are presented. The received results showed that: in dry season, the influence of the Cai river water has is limited in Cai river estuary with the approximate transferable distance from the river mouth to the open sea of about 1 km. The isohaline 32%o could be defined as the separate boundary of the Cai river water; In rainy season, due to the river water discharges are high, the influence of Cai river water could be transferred to the open sea and island areas. The immerge of the Cai river water in the open sea areas in rainy season has changed the vertical structure of salinity and temperature in the northern part of Nhatrang bay. In both seasons, the Cai river water have influenced in the surface water layers 0 - 2m and the water layers deeper than 2m are influenced by the sea waters with the salinity of higher than 32%o.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.