906 resultados para Targeting
Resumo:
Passiflora species are distributed throughout Latin America, and Brazil and Colombia serve as the centers of diversity for this genus. We performed cross-species amplification to evaluate 109 microsatellite loci in 14 Passiflora species and estimated the diversity and genetic structure of Passiflora cincinnata, Passiflora setaceae and Passiflora edulis. A total of 127 accessions, including 85 accessions of P. edulis, a commercial species, and 42 accessions of 13 wild species, were examined. The cross-species amplification was effective for obtaining microsatellite loci (average cross-amplification of 70%). The average number of alleles per locus (five) was relatively low, and the average diversity ranged from 0.52 in P. cincinnata to 0.32 in P. setacea. The Bayesian analyses indicated that the P. cincinnata and P. setacea accessions were distributed into two groups, and the P. edulis accessions were distributed into five groups. Private alleles were identified, and suggestions for core collections are presented. Further collections are necessary, and the information generated may be useful for breeding and conservation.
Resumo:
The carboxy terminal octapeptide of cholecystokinin (CCK8) is a hormone that binds high affinity receptors in a number of tissues including pancreas and pancreatic tumours. As part of our studies to develop effective gene therapy for the treatment of pancreatic cancers, we have investigated various gene delivery systems that depend on CCK8 receptor targeting. In this paper,we describe the synthesis of a CCK8-DNA complex designed to deliver foreign DNA to cholecystokinin receptor-positive cells. CCK8 was ligated to avidin and then complexed to linearis biotinylated DNA (pSV-CAT). The uptake of P-32-labelled CCK8-DNA complex by rat pancreatic acini was linear with time over 4 h with 65-70% of uptake inhibited by 100 nM CCK8. The complex appeared to be internalised since it could not be removed by acid wash. When administered intra-arterially, the complex was rapidly removed from the circulation with no evidence of targeted delivery to the pancreas, However, following a single intraperitoneal dose, the pancreas accumulated-5- 8% of the total administered complex by 24 h. These results suggest that peptide-dependent gene delivery to CCK receptor positive cells in vivo is feasible but, when administered directly into the circulation, diffusional barriers across the endothelium may limit distribution to peripheral tissues. Intraperitoneal administration therefore may be a useful alternative for targeting the pancreas.
Resumo:
The targeting of topically applied drug molecules into tissues below a site of application requires an understanding of the complex interrelationships between the drug, its formulation, the barrier properties of the skin, and the physiological processes occurring below the skin that are responsible for drug clearance from the site, tissue, and/or systemic distribution and eventual elimination. There is still a certain amount of controversy over the ability of topically applied drugs to penetrate into deeper tissues by diffusion or whether this occurs by redistribution in the systemic circulation. The major focus of our work in this area has been in determining how changes in drug structure and physicochemical properties, such as protein binding and lipophilicity, affect drug clearance into the local dermal microcirculation and lymphatics, as well as subsequent distribution into deeper tissues below an application site. The present study outlines our recent thinking on the drug molecule optimal physical attributes, in terms of plasma and tissue partitioning behaviour, that offer the greatest potential for deep tissue targeting. Drug Dev. Res. 46:309-315, 1999. (C) 1999 Wiley-Liss, Inc.
Resumo:
Neurons in the central amygdala express two distinct types of ionotropic GABA receptor. One is the classical GABA(A) receptor that is blocked by low concentrations of bicuculline and positively modulated by benzodiazepines. The other is a novel type of ionotropic GABA receptor that is less sensitive to bicuculline but blocked by the GABA(C) receptor antagonist (1,2,5,6-tetrohydropyridine-4-yl) methylphosphinic acid (TPMPA) and by benzodiazepines. In this study, we examine the distribution of these two receptor types. Recordings of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) showed a wide variation in amplitude. Most events had amplitudes of 100 pA. Large-amplitude events also had rise times faster than small-amplitude events. Large-amplitude events were fully blocked by 10 muM bicuculline but unaffected by TPMPA. Small amplitude events were partially blocked by both bicuculline and TPMPA. Focal application of hypertonic sucrose to the soma evoked large-amplitude mIPSCs, whereas focal dendritic application of sucrose evoked small-amplitude mIPSCs. Thus inhibitory synapses on the dendrites of neurons in the central amygdala express both types of GABA receptor, but somatic synapses expressed purely GABA(A) receptors. Minimal stimulation revealed that inhibitory inputs arising from the laterally located intercalated cells innervate dendritic synapses, whereas inhibitory inputs of medial origin innervated somatic inhibitory synapses. These results show that different types of ionotropic GABA receptors are targeted to spatially and functionally distinct synapses. Thus benzodiazepines will have different modulatory effects on different inhibitory pathways in the central amygdala.
Resumo:
c-Myb is a transcription factor employed in the haematopoietic system and gastrointestinal tract to regulate the exquisite balance between cell division, differentiation and survival. In its absence, these tissues either fail to form, or show aberrant biology. Mice lacking a functional c-myb gene die in utero by day 15 of development. When inappropriately expressed, as is common in leukaemia and epithelial cancers of the breast, colon and gastro-oesophagus, c-Myb appears to activate gene targets of key importance to cancer progression and metastasis. These genes include cyclooxygenase-2 (COX-2), Bcl-2, Bcl-X-L and c-Myc, which influence diverse processes such as angiogenesis, proliferation and apoptosis. The clinical potential for blocking c-Myb expression in malignancies is based upon strong preclinical data and some trial-based evidence. The modest clinical experience to date has been with haematopoietic malignancies, but other disease classes may be amenable to similar interventions. The frontline agents to achieve this are nuclease-resistant oligodeoxynucleotides (ODNs), which are proving to be acceptable therapeutic reagents in terms of tolerable toxicities and delivery. Nevertheless, further effort must be focused on improving their efficacy, eliminating non-specific toxicity and optimising delivery. Optimisation issues aside, it would appear that anti-c-Myb therapies will be used with most success when combined with other agents, some of which will be established cytotoxic and differentiation-inducing drugs. This review will explore the future strategic use of ODNs in vivo, focusing on a wide spectrum of diseases, including several beyond the haematopoietic malignancies, in which c-Myb appears to play a role.
Resumo:
This paper examines the compatibility of inflation targeting with an economy that is Post Keynesian in character. We show that in a Post Keynesian environment, policymakers can both set and achieve an inflation target without adverse consequences for the real economy, as long as an appropriate policy mix is chosen. The latitude that policymakers have in making this choice is investigated. One of our key results is that orthodox policy regimes do not provide appropriate policy mixes. Indeed, the more orthodox the policy regime becomes, the less viable is inflation targeting in a Post Keynesian economy.
Resumo:
Using data from OECD economies, we show that inflation targeters suffered smaller output losses during disinflations when compared to nontargeters. We also study why some countries choose to inflation target while others do not and find that higher average inflation and smaller debt levels render the adoption of the regime more likely. Applying Heckman`s procedure to control for selection bias does not alter the link between inflation targeting and less costly disinflations.
Resumo:
In a recent thought-provoking paper, Ball and Sheridan [Ball, L., Sheridan, N., 2005. Does inflation targeting matter? In: Bernanke, B.S., Woodford, M. (Eds.), The Inflation-Targeting Debate, University of Chicago Press] show that the available evidence for a group of developed economies does not lend credence to the belief that adopting an inflation targeting regime (IT) was instrumental in bringing inflation and inflation volatility down. Here, we extend Ball and Sheridan`s analysis for a subset of 36 emerging market economies and find that, for them, the story is quite different. Compared to non-targeters, developing countries adopting the IT regime not only experienced greater drops in inflation, but also in growth volatility, thus corroborating the view that the regime`s ""constrained flexibility"" to deal with adverse shocks delivered concrete welfare gains. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
alpha-Conotoxins that target the neuronal nicotinic acetylcholine receptor have a range of potential therapeutic applications and are valuable probes for examining receptor subtype selectivity. The three-dimensional structures of about half of the known neuronal specific alpha-conotoxins have now been determined and have a consensus fold containing a helical region braced by two conserved disulfide bonds. These disulfide bonds define the two-loop framework characteristic for alpha-conotoxins, CCXmCXnC, where loop 1 comprises four residues (m = 4) and loop 2 between three and seven residues (n = 3, 6 or 7). Structural studies, particularly using NMR spectroscopy have provided an insight into the role and spatial location of residues implicated in receptor binding and biological activity.
Resumo:
Objectives: To evaluate the effect of a radio and newspaper campaign encouraging Italian-speaking women aged 50-69 years to attend a population-based mammography screening program. Methods: A series of radio scripts and newspaper advertisements ran weekly in the Italian-language media over two, four-week periods. Monthly mammography screens were analysed to determine if numbers of Italian-speaking women in the program increased during the two campaign periods, using interrupted time series regression analysis. A survey of Italian-speaking women attending BreastScreen NSW during the campaign period (n=240) investigated whether individuals had heard or seen the advertisements. Results: There was no statistically significant difference in the number of initial or subsequent mammograms in Italian-speaking women between the campaign periods and the period prior to (or after) the campaign. Twenty per cent of respondents cited the Italian media campaign as a prompt to attend. Fifty per cent had heard the radio ad and 30% had seen the newspaper ad encouraging Italian-speaking women to attend BSNSW. The most common prompt to attend was the BSNSW invitation letter, followed by information or recommendation from a GP. Conclusion: Radio and newspaper advertisements developed for the Italian community did not significantly increase attendance to BSNSW. Implications: Measures of program effectiveness based on self-report may not correspond to aggregate screening behaviour. The development of the media campaign in conjunction with the Italian community, and the provision of appropriate levels of resourcing, did not ensure the media campaign's success.
Resumo:
Objective: To target antigen-loaded liposomes to myeloid APC in vivo for immunotherapy and to manipulate immune function through liposome composition. Method: Liposomes were loaded with ovalbumin, the lipophilic red fluorescent marker, DiI, with or without QuilA adjuvant then injected either i.v. or s.c. to naı¨ ve C57Bl/6 mice. Spleen, liver and draining LN were stained with MHC class II and various myeloid markers to determine the uptake of liposomes. Frozen sections of spleen and draining LN were stained with FITC-labeled mAb to determine which cells take up the liposomes. To determine the effect on OVA-specific T cell responses, liposomes were administered to Balb/c mice which received DO11.10 OVAspecific TCR transgenic T cells labelled with CFSE. Results: The DiI fluorescence was visualized in MHC class II+ macrophages and DC in draining lymph nodes after s.c. injection and in spleen and liver after i.v injection. Immunofluorescence microscopy shows liposome uptake in marginal zone macrophages and some DC in the T cell areas of the spleen after i.v. injection. Administration of ova-liposomes with or without QuilA stimulated a specific T cell response as measured by CFSE dilution. Conclusion: APC of liver, spleen and LN, and subsequent antigen presentation to T cells can be targeted for immunotherapy by the administration of liposomes encapsulating antigen and adjuvant. Varying the composition and routes of liposome administration is expected to alter the function of the targeted APC and the T cell response.
Resumo:
Context: Micro-RNA have emerged as an important class of short endogenous RNA that act as posttranscriptional regulators of gene expression and are constantly deregulated inhumancancer. MiR-1 has been found down-regulated in lung, colon, and prostate cancer. Objectives: In this study, we investigated the possible role of miR-1 in thyroid carcinogenesis. Design: We have analyzed miR-1 expression in a panel of thyroid neoplasias including benign and malignant lesions and searched for miR-1 targets. Results: Our results show that miR-1 expression is drastically down-regulated in thyroid adenomas and carcinomas in comparison with normal thyroid tissue. Interestingly, miR-1 down-regulation was also found in thyroid hyperproliferative nonneoplastic lesions such as goiters. We identified the CCND2, coding for the cyclin D2 (CCND2) protein that favors the G1/S transition, CXCR4, and SDF-1 alpha genes, coding for the receptor for the stromal cell derived factor-1 (SDF-1)/CXCL12 chemokine and its ligand SDF-1/CXCL12, respectively, as miR-1 targets. An inverse correlation was found between miR-1 expression and CXC chemokine receptor 4 (CXCR4) and SDF-1 alpha protein levels in papillary and anaplastic thyroid carcinomas. Consistent with a role of the CCND2 protein in cell proliferation and CXCR4 and SDF-1 alpha proteins in cell invasion and metastasis, functional studies demonstrate that miR-1 is able to inhibit thyroid carcinoma cell proliferation and migration. Conclusions: These results indicate the involvement of miR-1 in thyroid cell proliferation and migration, validating a role of miR-1 down-regulation in thyroid carcinogenesis. (J Clin Endocrinol Metab 96: E1388-E1398, 2011)
Resumo:
It has been reported that microRNAs (miRNA) may have allele-specific targeting for the 3` untranslated region (3` UTR) of the HLA-G locus. In a previous study, we reported 11 3`UTR haplotypes encompassing the 14-bp insertion/deletion polymorphism and seven SNPs (+3003 T/C, +3010 C/G, +3027 C/A, +3035 C/T, +3142 C/G, +3187A/G,and +3196 C/G), of which only the +3142 C/G SNP has been reported to influence the binding of miRNAs. Using bioinformatics analyses, we identified putative miRNA-binding sites considering the haplotypes encompassing these eight polymorphic sites, and we ranked the lowest free energies that could potentially lead to an mRNA degradation or translational repression. When a specific haplotype or a particular SNP was associated with a miRNA-binding site, we defined a free energy difference of 4 kcal/mol between alleles to classify them energetically distant. The best results were obtained for the miR-513a-5p, miR-518c*, miR-1262 and miR-92a-1*, miR-92a-2*, miR-661, miR-1224-5p, and miR-433 miRNAs, all influencing one or more of the +3003, +3010, +3027, and +3035 SNPs. The miR-2110, miR-93, miR-508-5p, miR-331-5p, miR-616, miR-513b, and miR-589* miRNAs targeted the 14-bp fragment region, and miR-148a, miR-19a*, miR-152, mir-148b,and miR-218-2 also influenced the +3142C/G polymorphism. These results suggest that these miRNAs might play a relevant role on the HLA-G expression pattern. (C) 2009 Published by Elsevier Inc. on behalf of American Society for Histocompatibility and Immunogenetics.
Resumo:
The idea that within the bulk of leukemic cells there are immature progenitors which are intrinsically resistant to chemotherapy and able to repopulate the tumor after treatment is not recent. Nevertheless, the term leukemia stem cells (LSCs) has been adopted recently to describe these immature progenitors based on the fact that they share the most relevant features of the normal hematopoetic stem cells (HSCs), i.e. the self-renewal potential and quiescent status. LSCs differ from their normal counterparts and from the more differentiated leukemic cells regarding the default status of pathways regulating apoptosis, cell cycle, telomere maintenance and transport pumps activity. In addition, unique features regarding the interaction of these cells with the microenvironment have been characterized. Therapeutic strategies targeting these unique features are at different stages of development but the reported results are promising. The aim of this review is, by taking acute myeloid leukemia (AML) as a bona fide example, to discuss some of the mechanisms used by the LSCs to survive and the strategies which could be used to eradicate these cells.