822 resultados para Tannin acyl hydrolase
Resumo:
Monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, the precursor of triacylglycerol biosynthesis and an important signaling molecule. Here, we describe the isolation and characterization of the peanut (Arachis hypogaea) MGAT gene. The soluble enzyme utilizes invariant histidine-62 and aspartate-67 residues of the acyltransferase motif for its MGAT activity. A sequence analysis revealed the presence of a hydrolase (GXSXG) motif, and enzyme assays revealed the presence of monoacylglycerol (MAG) and lysophosphatidylcholine (LPC) hydrolytic activities, indicating the bifunctional nature of the enzyme. The overexpression of the MGAT gene in yeast (Saccharomyces cerevisiae) caused an increase in triacylglycerol accumulation. Similar to the peanut MGAT, the Arabidopsis (Arabidopsis thaliana) homolog (At1g52760) also exhibited both acyltransferase and hydrolase activities. Interestingly, the yeast homolog lacks the conserved HX4D motif, and it is deficient in the acyltransferase function but exhibits MAG and LPC hydrolase activities. This study demonstrates the presence of a soluble MGAT/hydrolase in plants. The predicted three-dimensional homology modeling and substrate docking suggested the presence of two separate substrate (MAG and LPC)-binding sites in a single polypeptide. Our study describes a soluble bifunctional enzyme that has both MGAT and hydrolase functions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The extracellular tannase from Emericela nidulans was immobilized on different ionic and covalent supports. The derivatives obtained using DEAE-Sepharose and Q-Sepharose were thermally stable from 60 to 75 °C, with a half life (t50) >24 h at 80 °C at pH 5. 0. The glyoxyl-agarose and amino-glyoxyl derivatives showed a thermal stability which was lower than that observed for ionic supports. However, when the stability to pH was considered, the derivatives obtained from covalent supports were more stable than those obtained from ionic supports. DEAE-Sepharose and Q-Sepharose derivatives as well as the free enzyme were stable in 30 and 50 % (v/v) 1-propanol. The CNBr-agarose derivative catalyzed complete tannic acid hydrolysis, whereas the Q-Sepharose derivative catalyzed the transesterification reaction to produce propyl gallate (88 % recovery), which is an important antioxidant. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Background: Tannases are enzymes that may be used in different industrial sectors as, for example, food and pharmaceutical. They are obtained mainly from microorganisms, as filamentous fungi. However, the diversity of fungi stays poorly explored for tannase production. In this article, Aspergillus ochraceus is presented as a new source of tannase with interesting features for biotechnological applications. Results: Extracellular tannase production was induced when the fungus was cultured in Khanna medium with tannic acid as carbon source. The extracellular tannase was purified 9-fold with 2% recovery and a single band corresponding to 85 kDa was observed in SDS-PAGE. The native apparent molecular mass was estimated as 112 kDa. Optima of temperature and pH were 40 degrees C and 5.0, respectively. The enzyme was fully stable from 40 degrees C to 60 degrees C during 1 hr. The activity was enhanced by Mn2+ (33-39%) and NH4+ (15%). The purified tannase hydrolyzed tannic acid and methyl gallate with Km of 0.76 mM and 0.72 mM, respectively, and Vmax of 0.92 U/mg protein and 0.68 U/mg protein, respectively. The analysis of a partial sequence of the tannase encoding gene showed an open read frame of 567 bp and a sequence of 199 amino acids were predicted. TLC analysis revealed the presence of gallic acid as a tannic acid hydrolysis product. Conclusion: The extracellular tannase produced by A. ochraceus showed distinctive characteristics such as monomeric structure and activation by Mn2+, suggesting a new kind of fungal tannases with biotechnological potential. Further, it was the first time that a partial gene sequence for A. ochraceus tannase was described.
Resumo:
1. Saline extract of sheep pancreas acetone-dried powder was shown to catalyse acyl ester hydrolysis of spinach leaf galactosyl diglycerides and also galactosylglucosyl diglyceride of Lactobacillus casei. 2. Sodium deoxycholate stimulated the enzyme activity. Ca2+ had no effect on the hydrolysis of monogalactosyl diglyceride, but it enhanced that of digalactosyl diglyceride. When added together, there was considerably less activity with both the substrates. 3. Optimal hydrolysis was observed at pH7.2. 4. The initial point of hydrolysis was at position-1, leading to the formation of monogalactosyl monoglyceride and digalactosyl monoglyceride. Further hydrolysis to the corresponding galactosylglycerols and later to galactose and glycerol was also observed, indicating the presence of a- and b-galactosidases in the enzyme preparation. 5. Formation of monogalactosyl diglyceride from digalactosyl diglyceride by the action of a-galactosidase was noted. 6. Monogalactosyl diglyceride was also hydrolysed by b-galactosidase to a limited extent, giving rise to diacylglycerol and galactose. 7. Attempts at purification of monogalactosyl diglyceride acyl hydrolase by using protamine sulphate treatment, Sephadex G-100 filtration and DEAE-cellulose chromatography gave a partially purified enzyme which showed 9- and 81-fold higher specific activity towards monogalactosyl diglyceride and digalactosyl diglyceride respectively. This still showed acyl ester hydrolysis activity towards methyl oleate, phosphatidylcholine and triacylglycerol. 8. When sheep, rat and guinea-pig tissues were compared, guinea-pig tissues showed the highest activity towards both monogalactosyl diglyceride and digalactosyl diglyceride. In all the species pancreas showed higher activity than intestine.
Resumo:
La phospholipase A2 liée aux lipoprotéines (Lp-PLA2) est une biomarqueur de plusieurs maladies inflammatoires et une niveau sérique élevé est associé à l’instabilité de la plaque artérioscléreuse. Comme son nom l’indique, la Lp-PLA2 est liée aux lipoprotéines plasmatiques (LDL et HDL) et son rôle est de prévenir l’accumulation de phospholipides oxidés a la surface des lipoprotéines. Toutefois, les produits de dégradation des phospholipides oxidés par la Lp-PLA2 - le lysophosphatidyl choline par les acides gras oxidés peuvent aussi promouvoir l’inflammation. Mieux comprendre le métabolisme de la Lp-PLA2 pourrait nous permettre de mieux apprécier son rôle dans la formation d’une plaque artérioscléreuse instable, car des études antérieures ont démontré une forte expression de la Lp-PLA2 dans la plaque. De plus, il existe une forte corrélation entre les niveaux et l’activité plasmatiques de la Lp-PLA2 et la maladie coronarienne, les accidents cérébraux-vasculaires et la mortalité cardiaque. L’inhibition de la Lp-PLA2 avec une petite molécule, le darapladib, n’a pas démontré de bénéfice sur les évènements cardiovasculaires dans deux études cliniques. Cette thèse présentera d’abord une revue de la littérature sur la Lp-PLA2 et les maladies cardiovasculaires et les deuxième et troisième chapitres, une étude clinique réalisée sur des patients avec un syndrome coronarien aigu.
Resumo:
In this paper we report on our study of the changes in biomass, lipid composition, and fermentation end products, as well as in the ATP level and synthesis rate in cultivated potato (Solanum tuberosum) cells submitted to anoxia stress. During the first phase of about 12 h, cells coped with the reduced energy supply brought about by fermentation and their membrane lipids remained intact. The second phase (12–24 h), during which the energy supply dropped down to 1% to 2% of its maximal theoretical normoxic value, was characterized by an extensive hydrolysis of membrane lipids to free fatty acids. This autolytic process was ascribed to the activation of a lipolytic acyl hydrolase. Cells were also treated under normoxia with inhibitors known to interfere with energy metabolism. Carbonyl-cyanide-4-trifluoromethoxyphenylhydrazone did not induce lipid hydrolysis, which was also the case when sodium azide or salicylhydroxamic acid were fed separately. However, the simultaneous use of sodium azide plus salicylhydroxamic acid or 2-deoxy-D-glucose plus iodoacetate with normoxic cells promoted a lipid hydrolysis pattern similar to that seen in anoxic cells. Therefore, a threshold exists in the rate of ATP synthesis (approximately 10 μmol g−1 fresh weight h−1), below which the integrity of the membranes in anoxic potato cells cannot be preserved.
Resumo:
A cDNA clone encoding a lipase (lipolytic acyl hydrolase) expressed at the onset of petal senescence has been isolated by screening a cDNA expression library prepared from carnation flowers (Dianthus caryophyllus). The cDNA contains the lipase consensus sequence, ITFAGHSLGA, and encodes a 447-amino acid polypeptide with a calculated molecular mass of 50.2 kDa that appears to be a cytosolic protein. Over-expression of the clone in Escherichia coli yielded a protein of the expected molecular weight that proved capable of deesterifying fatty acids from p-nitrophenylpalmitate, tri-linolein, soybean phospholipid, and Tween in both in vitro and in situ assays of enzyme activity. The abundance of the lipase mRNA increases just as carnation flowers begin to senesce, and expression of the gene is also induced by treatment with ethylene. Southern blot analyses of carnation genomic DNA have indicated that the lipase is a single copy gene. The lipase gene is also expressed in carnation leaves and is up-regulated when the leaves are treated with ethylene. Deesterification of membrane lipids and ensuing loss of membrane structural integrity are well established early events of plant senescence, and the expression pattern of this lipase gene together with the lipolytic activity of its cognate protein indicate that it plays a fundamentally central role in mediating the onset of senescence.
Resumo:
Glucose (Glc) starvation of suspension-cultured carrot (Daucus carota L.) cells resulted in sequential activation of phospholipid catabolic enzymes. Among the assayed enzymes involved in the degradation, phospholipase D (PLD) and lipolytic acyl hydrolase were activated at the early part of starvation, and these activities were followed by β-oxidation and the glyoxylate cycle enzymes in order. The activity of PLD and lipolytic acyl hydrolase was further confirmed by in vivo-labeling experiments. It was demonstrated that Glc added to a medium containing starving cells inhibited the phospholipid catabolic activities, indicating that phospholipid catabolism is negatively regulated by Glc. There was a burst of ethylene production 6 h after starvation. Ethylene added exogeneously to a Glc-sufficient medium activated PLD, indicating that ethylene acts as an element in the signal transduction pathway leading from Glc depletion to PLD activation. Activation of lipid peroxidation, suggestive of cell death, occurred immediately after the decrease of the phospholipid degradation, suggesting that the observed phospholipid catabolic pathway is part of the metabolic strategies by which cells effectively survive under Glc starvation.
Resumo:
Palmitoyl-protein thioesterase is a lysosomal long-chain fatty acyl hydrolase that removes fatty acyl groups from modified cysteine residues in proteins. Mutations in palmitoyl-protein thioesterase were recently found to cause the neurodegenerative disorder infantile neuronal ceroid lipofuscinosis, a disease characterized by accumulation of amorphous granular deposits in cortical neurons, leading to blindness, seizures, and brain death by the age of three. In the current study, we demonstrate that [35S]cysteine-labeled lipid thioesters accumulate in immortalized lymphoblasts of patients with infantile neuronal ceroid lipofuscinosis. The accumulation in cultured cells is reversed by the addition of recombinant palmitoyl-protein thioesterase that is competent for lysosomal uptake through the mannose-6-phosphate receptor. The [35S]cysteine-labeled lipids are substrates for palmitoyl-protein thioesterase in vitro, and their formation requires prior protein synthesis. These data support a role for palmitoyl-protein thioesterase in the lysosomal degradation of S-acylated proteins and define a major new pathway for the catabolism of acylated proteins in the lysosome.
Resumo:
Human CGI-58 (for comparative gene identification-58) and YLR099c, encoding Ict1p in Saccharomyces cerevisiae, have recently been identified as acyl-CoA-dependent lysophosphatidic acid acyltransferases. Sequence database searches for CGI-58 like proteins in Arabidopsis (Arabidopsis thaliana) revealed 24 proteins with At4g24160, a member of the alpha/beta-hydrolase family of proteins being the closest homolog. At4g24160 contains three motifs that are conserved across the plant species: a GXSXG lipase motif, a HX4D acyltransferase motif, and V(X)(3)HGF, a probable lipid binding motif. Dendrogram analysis of yeast ICT1, CGI-58, and At4g24160 placed these three polypeptides in the same group. Here, we describe and characterize At4g24160 as, to our knowledge, the first soluble lysophosphatidic acid acyltransferase in plants. A lipidomics approach revealed that At4g24160 has additional triacylglycerol lipase and phosphatidylcholine hydrolyzing enzymatic activities. These data establish At4g24160, a protein with a previously unknown function, as an enzyme that might play a pivotal role in maintaining the lipid homeostasis in plants by regulating both phospholipid and neutral lipid levels.
Resumo:
The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 ( unit-cell parameters a = b = 136.83, c = 99.82 angstrom, gamma = 120 degrees). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 angstrom resolution using the laboratory X-ray source and are suitable for crystal structure determination.