910 resultados para Tan-lu Fault
Resumo:
The stratigraphic architecture, structure and Cenozoic tectonic evolution of the Tan-Lu fault zone in Laizhou Bay, eastern China, are analyzed based on interpretations of 31 new 2D seismic lines across Laizhou Bay. Cenozoic strata in the study area are divided into two layers separated by a prominent and widespread unconformity. The upper sedimentary layer is made up of Neogene and Quaternary fluvial and marine sediments, while the lower layer consists of Paleogene lacustrine and fluvial facies. In terms of tectonics, the sediments beneath the unconformity can be divided into four main structural units: the west depression, central uplift, east depression and Ludong uplift. The two branches of the middle Tan-Lu fault zone differ in their geometry and offset: the east branch fault is a steeply dipping S-shaped strike-slip fault that cuts acoustic basement at depths greater than 8 km, whereas the west branch fault is a relatively shallow normal fault. The Tan-Lu fault zone is the key fault in the study area, having controlled its Cenozoic evolution. Based on balanced cross-sections constructed along transverse seismic line 99.8 and longitudinal seismic line 699.0, the Cenozoic evolution of the middle Tan-Lu fault zone is divided into three stages: Paleocene-Eocene transtension, Oligocene-Early Miocene transpression and Middle Miocene to present-day stable subsidence. The reasons for the contrasting tectonic features of the two branch faults and the timing of the change from transtension to transpression are discussed. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
研究区位于郯庐断裂中段与济阳坳陷的构造结合部,区内走滑构造广泛发育,主要的走滑断裂有7条,分别是郯庐断裂带的东西两支、垦东断层、孤东断层、长堤断层、埕东断层和发育于垦东凸起中部的浅层走滑构造带。走滑构造带与油气富集带有着明显的对应关系。 通过对研究区内二维、三维地震测线和平面构造图的精细解释和分析,分别揭示了各走滑断裂在平面、剖面和三维空间上的构造形态。根据走滑断裂及其伴生构造的平面和剖面上的几何学特征,将研究区内的走滑断裂划分为三种类型:成熟型走滑断裂、隐伏型走滑断裂、不连续型的走滑断裂。 从理论模式研究入手,推导了拉分盆地中盆地的走滑速率与沉降速率之间的关系,证实了走滑速率同盆地的几何形状参数、最大沉降深度和盆地的沉降速率存在着稳定的数值关系。通过对莱州湾地区潍北凹陷基底沉降历史的分析,建立了潍北凹陷沉降速率与郯庐断裂中段走滑速率之间的经验关系式,进而求出郯庐断裂中段新生代右行走滑位移量的大小为40km。 运用2DMove软件,对研究区内四条典型剖面进行构造复原,计算出了各条剖面每个时期的伸展参数,对研究区构造活动强度进行了定量分析,揭示了研究区的构造演化规律。通过运用Ansys软件进行有限元模拟,恢复了晚白垩世晚期-古近纪早期研究区内的构造应力场和应变场,揭示了扭张作用是研究区内走滑断层开始走滑的主要原因。 通过上述分析,结合对究区内近几年勘探开发成功和失败的实例分析,全面探讨了走滑活动对于油气成藏“生”、“储”、“盖”、“圈”、“运”、“保”各因素的影响。
Resumo:
The petrology and geochemistry of peridotites entrained in Beiyan Cenozoic alkaline basalts within the middle segment of Tan-Lu fault zone and clinopyroxene megacrysts in the late Mesozoic and Cenozoic alkaline basaltic rocks from the North China Craton, have been systematically investigated. The main conclusions are obtained as follows. The peridotites entrained in alkaline basalts at Beiyan, Shandong Province, China are comprised of dominantly spinel lherzolites and spinel wehrlites with porphyroclastic, granuloblastic textures to resorption textures. The xenoliths are fertile in major element compositions (High CaO, TiO2, Low MgO, Cr2O3). The olivine Fo (= 100×Mg / (Mg+Fe) possesses a low and very large range of 81.0 to 91.0. The peridotites contain high percentages (Lherzolites: 10 - 19% in volume; Wehrlites: 24 - 28% in volume) of clinopyroxene with spongy textures. The Sr and Nd isotopic ratios of clinopyroxene separates from peridotites and pyroxenite xenoliths have a depleted and small range fall within the area of MORB, similar to newly-accreted lithospheric mantle. However, the appearance of many wehrlites and highly enriched LREE pattern suggest that this newly-accreted lithospheric mantle was considerably modified and reconstructed recently through the peridotite-asthenospheric melt interaction. The upwelling of asthenosphere from late Cretaceous to Eogene and upper mantle shearing of the Tan-Lu fault played an important role in the modification and reconstruction of the newly-accreted lithospheric mantle. The clinopyroxene megacrysts in the late Mesozoic and Cenozoic alkaline basaltic rocks from the eatern North China Craton are different in aspects of major elements, trace elements and isotopic composition. The characteristics of texture, mineral compositions and geochemistry as well as the Fe-Mg partitioning between the crystal and the melt indicates that the Al-augites in the Cenozoic basalts represent high-pressure crystallization products of alkaline basaltic melts. Thus, both of clinopyroxene megacrysts and host basalts could be derived from a same primitive magma. However, the Al-augites in the late Mesozoic basaltic rocks represent accidentally-included xenocrysts of basaltic components which had crystallized in the depth from a previously melting episode. The more depleted Sr-Nd isotopic compositions of Cenozoic megacrysts compared with those of host alkaline basalts and tholeiites demonstrate that even the alkali basalts could not completely represent primitive magma initiating in asthenosphere. That is to say, the Cenozoic alkaline basalts were more or less modified by some enriched Sr-Nd isotopic components during their eruption. Meanwhile, the tholeiites were not the products formed only by fractional crystallization of alkaline basaltic magma or different degrees of partial melting. It may result from the contribution of lithospheric mantle materials or crust contamination in magma chamber to alkali basaltic magmas.
Resumo:
The 3-D velocity images of the crest and upper mantle beneath the region of 112° -124°E, 28°-39°N including the Dabie-Sulu orogenic belt are reconstructed by using 36405 P-wave arrivals of 3437 regional and 670 distant earthquakes during the period from 1981 to 1996, and gridding the area of 0.5° * 0.5°. The results of tomography demonstrate that: 1. The results of tomographic imaging show a broad heterogeneity in P wave velocity structure for the lithosphere beneath the Dabie-Sulu orogenic belt. 2. In the Dabie orogenic belt, the velocity patterns in the crust are different among various tectonic units. The Dabie and Qinling orogenic belts are remarkable in the tomographic images, and in mm the Hongan and Dabie blocks in the Dabie orogenic belt are also imaged very distinguishably. 3. A velocity (about 5.9~6.0 km/s) layer exists in the Dabie block at depth between 15~25 km, which is coincident with the low-resistance layer at the depth of 12-23 km, being inferred to be the tectonic detachment zone and suggesting that the extension detachment structure was formed in the middle crust. Beneath the southern and northerm Dabie tectonic units, the north-dipping high-velocity (at level of 6.5 ~ 6.6 km/s) block was developed in the crust, which might be correlated with the UHP rockswith low content of the meta-ultramafic rocks. This result is in agreement with the geological observation on the surface. 4. The velocity image at 40 km depth reveals the features at the top of mantle and the configuration of the Moho discontinuity. The depth of the Moho changes slightly along the trend of the orogenic belt. It in Hongan block is less than 40 km, but it is different in the western and eastern parts of the Dabie block, the former is more than 40 km, and the latter less than or equal to 40 km. The remnant of the mountain root exists between the Shangcheng-Macheng fault and the line of Huoshan-Yuexi-Yingshan in the Dabie orogenic belt, and beneath the southern and northern Dabie tectonic units. However, the thickness of the Moho is about 40 km and there is no obvious changes, which suggest that the Dabie orogenic belt has been experienced quite in the gravity equilibration. The Moho's depth in the Sulu is less than 40 km. 5. There is a dipping slab-like high-velocity body in the uppermost mantle. It is sandwiched by slow velocities and exists beneath the Dabie-Sulu orogenic belt in the range of depths between the Moho discontinuity and 110 km at least. This high-velocity body outlines a picture of the slab interpreted as the remnant of the Triassic subducted YZ. 6. The Sulu orogenic belt displays "crocodilian" velocity structure, the upper crust of the Yangtze thrusted over the Huabei crest, and the Huabei crust indented into the Yangtze crust, where the ancient subduction zone of the Yangtze lithosphere located. Based on the previous geological data, this structure is not related with the collision between the Yangtze and Sino-Korean Blocks, but caused by the sinistral offset of the Tan-Lu Fault. Studied on the velocity structure of the eastern Huabei lithosphere indicates: 1. The 'present-day' lithosphere of the eastern Huabei is between 40-100 km thick with greatly thinned lithosphere around the Bohai Sea. Generally, thickness of the lithosphere in this region decreased eastwards. 2. The attenuation of the lithosphere is attributed to the strongly uplift of the asthenosphere. In the area between the Taihang Mountains and the Tan-Lu Fault, there is a 'lever' with red low velocity belt, it is clearly defined, transverse continuity, depth between 100-150 km, local variations visible, and an upwards trend towards the Bohai Sea. Generally, the velocity structure in the mantle beneath the lithosphere displays irregular column-shape consisting of alternating high and low velocities, and when cold high velocity ancient lithosphere connects with the hot low velocity mantle materials forming precipitous compact structure. More heat pathways from the mantle occur towards the Tan-Lu Fault. 3. The strongly irregular characteristics of the contact between the asthenosphere and the lithosphere is induced by the long-term hot, chemical erosion and alteration on the contact. 4. There are still preserved high velocity lithosphedc root beneath Huabei with 'block-shape' distribution and surrounded by hot materials. Results of our studies indicate that the evolution models of the eastern China mantle are characterized by the direct contact between the uplifted lithosphere and the Huabei Craton accompanying the upwelling of the deep mantle materials. At the contact betwen the lithosphere and the asthenosphere, the upwelled mantle materials replaced and altered the lower lithosphere forming the metasome through the hot and chemical modifications impacted on the Craton lithosphere, and changed it into the lithosphere gradually, resulting in the lithospheric thinning. Thus, the lithospheric thinning is the result of the upwelling of the asthenosphere.
Resumo:
The Dabie Mountains is a collisional orogenic belt between the North China and Yantze Continental plates. It is the eastern elongation of the Tongbai and Qingling orogen, and is truncated at its east end by the Tan-Lu fault. Jadeite-quartzite belt occurs in the eastern margin of UHPMB from the Dabie Mountains. Geochemical features indicate that the protoliths of the jadeite-quartzite and associated eclogite to be supracrustal rocks. The occurrence of micro-inclusions of coesite in jadeite and garnet confirmed that the continental crust can be subducted to great depth (8 0-100km) and then exhumed rapidly with its UHP mineral signature fairly preserved. Therefore, study of UHP jadeite-quartzite provides important information on subduction of continental crustal rocks and their exhumation histories, as well as the dynamics of plate tectonic processes at convergent margins. The purpose of this paper is to investigate the presence of hydrous component in the jadeite-quartzite belt, significant natural variations in the hydrous component content of UHP minerals and to discuss the role of water in petrology, geochemistry and micro-tectonic. On the basis of our previous studies, some new geological evidences have been found in the jadeite-quartzite belt by researches on petrography, mineralogy, micro-tectonic, hydrous component content of UHP minerals and combined with the study on rheology of materials using microprob, ER, TEM. By research and analysis of these phenomenona, the results obtained are as follows: 1. The existence of fluid during ultra-high pressure metamorphic process. Jadeites, omphacite, garnet, rutile, coesite and quartz from the jadeite-quartzite belt have been investigated by Fourier transform infrared spectrometer and TEM. Results show that all of these minerals contain trace amount of water which occur as hydroxyl and free-water in these minerals. The two-type hydrous components in UHP minerals are indicated stable in the mantle-depth. The results demonstrated that these ultra-high pressure metamorphic minerals, which were derived from continental crust protoliths, they could bring water into the mantle depth during the ultra-high pressure metamorphism. The clusters of water molecules within garnet are very important evidence of the existence of fluid during ultra-high pressure metamorphic process. It indicated that the metamorphic system was not "dry"during the ultra-high pressure stage. 2.The distribution of hydrous component in UHP minerals of jadeite-quartzite. The systematic distribution of hydrous components in UHP minerals are a strong indication that water in these minerals, are controlled by some factors and that the observed variations are not of a random nature. The distribution and concentration of hydrous component is not only correlated with composition of minerals, but also a function of geological environment. Therefore, the hydrous component in the minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transported water molecules with decreasing pressure during their exhumation. And these water molecules can not only promote the deformation of jadeite through hydrolytic weakening, but also may be the part of the retrograde metamorphic fluid. 3.The role of water in the deformed UHP minerals. The jadeite, omphacite, garnet are strong elongated deformation in the jadeite-quartzite from the Dabie Mountains. They are (1) they are developed strong plastic deformation; (2) developed dislocation loop, dislocation wall; (3) the existence of clusters of water molecular in the garnet; and (4) the evolution of micero-tectonic from clusters of water molecular-dislocation loop in omphacite. That indicated that the water weakening controlled the mechanism of deformed minerals. Because the data presented here are not only the existence of clusters of water molecular in the garnet, but also developed strong elongation, high density of dislocation and high aspect ratios, adding microprobe data demonstrate the studied garnet crystals no compositional zoning. Therefore, this indicates that the diffusion process of the grain boundary mobility did not take place in these garnets. On the basis of above features, we consider that it can only be explained by plastic deformation of the garnets. The clusters of water molecules present in garnet was directly associated with mechanical weakening and inducing in plastic deformation of garnet by glissile dislocations. Investigate of LPO, strain analysis, TEM indicated that these clinopyroxenes developed strong elongation, high aspect ratios, and developed dislocation loop, dislocation wall and free dislocations. These indicated that the deformation mechanism of the clinopyroxenes plastically from the Dabie Mountains is dominant dislocation creep under the condition of the UHP metamorphic conditions. There are some bubbles with dislocation loops attached to them in the omphacite crystal. The bubbles attached to the dislocation loops sometimes form a string of bubble beads and some loops are often connected to one another via a common bubble. The water present in omphacite was directly associated with hydrolitic weakening and inducing in plastic deformation of omphacite by dislocations. The role of water in brittle deformation. Using microscopy, deformation has been identified as plastic deformation and brittle deformation in UHP minerals from the Dabie Mountains. The study of micro-tectonic on these minerals shows that the brittle deformation within UHP minerals was related to local stresses. The brittle deformation is interpreted as being caused by an interaction of high fluid pressure, volume changes. The hydroxyl within UHP minerals transported water molecules with decreasing pressure due to their exhumation. However, under eclogite facies conditions, the litho-static pressure is extreme, but a high fluid pressure will reduce the effective stress and make brittle deformation possible. The role of water in prograde metamorphism. Geochemical research on jadeite-quartzite and associated eclogite show that the protoliths of these rocks are supracrustal rocks. With increasing of temperature and pressure, the chlorite, biotite, muscovite was dehydrous reaction and released hydrous component during the subduction of continental lithosphere. The supracrustal rocks were transformed UHP rocks and formed UHP facies assemblage promotely by water introduction, and was retained in UHP minerals as hydrous component. The water within UHP minerals may be one of the retrograde metamorphic fluids. Petrological research on UHP rocks of jadeite-quartzite belt shows that there was existence of local fluids during early retrograde metamorphism. That are: (1) coronal textures and symplectite around relict UHP minerls crystals formed from UHP minerls by hydration reactions; (2) coronal textures of albite around ruitle; and (3) micro-fractures in jadeite or garnet were filled symplectite of Amp + PI + Mt. That indicated that the reactions of early retrograde metamorphism dependent on fluid introduction. These fluids not only promoted retrograde reaction of UHP minerals, but also were facilitate to diffuse intergranular and promote growth in minerals. Therefore, the hydrous component in the UHP minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transport water molecules with decreasing pressure and may take part in the retrograde metamorphic fluid during their exhumation. 7. The role of water in geochemistry of UHP jadeite-quartzite. Geochemical research show that there are major, trace and rare earth element geochemical variations in the jadeite-quartzite from the Changpu district of Dabie Mountains, during retrograde metamorphic processes from the jadeite-quartzite--gneiss. The elements such as SiO_2、FeO、Ba、Zr、Ga、La、Ce、PTN Nd% Sm and Eu increase gradually from the jadeite-quartzite to retrograded jadeite-quartzite and to gneiss, whilst TiO_2. Na_2CK Fe2O_3、Rb、Y、Nb、Gd、Tb、Dy、Ho、Er、Tm、Yb decrease gradually. And its fO_2 keep nearly unchanged during early retrograde metamorphism, but decreased obviously during later retrograde metamorphism. These indicate that such changes are not only controlled by element transformation between mineralogical phases, but also closely relative to fluid-rock interaction in the decompression retrograde metamorphic processes.
Resumo:
The Jiaodong gold province is the largest gold repository in China. Both mineralization and granitoid hosts are spatially related to the crustal-scale Tan-Lu strike-slip fault system, which developed along the Mesozoic continental margin in eastern China. A series of Ar-40/Ar-39 laser incremental heating analyses of hydrothermal sericite/muscovite from three major gold deposits (Jiaojia, Xincheng, and Wangershan) and igneous biotite from the granodiorite hosts were performed to establish a possible temporal link between gold mineralization, magmatism, and movement along the Tan-Lu fault zone. Magmatic biotite crystals yield well-defined and concordant plateau ages between 124.5+/-0.4 Ma and 124.0+/-0.4 Ma (2sigma), whereas sericite and muscovite samples (a total of 30 single separates) give reproducible plateau ages ranging from 121.0+/-0.4 Ma to 119.2+/-0.2 Ma (2sigma). An integration of our Ar-40/Ar-39 results with age data from other major gold deposits in Jiaodong demonstrates that widespread gold mineralization occurred contemporaneously during a 2-3-m.yr. period. Most gold deposits show intimate spatial associations with abundant mafic to intermediate dikes. The mafic dikes have K-Ar ages of 123.5-119.6 Ma, in excellent agreement with those of the gold deposits. These newly obtained Ar-40/Ar-39 ages, in combination with other independent geological and geochronological data on granodioritic intrusions (130-126 Ma), volcanic rocks (1243.6-114.7 Ma), and deformed rocks within strike-slip faults (132-120 Ma) in Jiaodong or adjacent areas, also support the idea that gold mineralization postdated the granodioritic magmatism but was contemporaneous with mafic magmatism and volcanism, all controlled by the transtensional motion along the Tan-Lu fault in the Early Cretaceous.
Resumo:
The Jiaodong gold province, the largest gold-producing district in China, is located in the jiaodong peninsula at the eastern margin of the North China craton and bounded by the continental scale Tan-Lu fault, 40 kin to the west. Previous geochronological studies suggest that pervasive gold deposition took place in the western part of the province between 122 and 119 Ma. Here we report high-quality Ar-40/Ar-39 ages of the Pengjiakuang and Rushan deposits from the eastern part of the jiaodong gold province, placing additional chronological constraints on the timing of regional mineralization. Seven sericite grains extracted from auriferous alteration assemblages at the Pengiiakuang deposit yielded well-defined plateau ages between 120.9 +/- 0.4 and 119.1 +/- 0.2 Ma (2 sigma). Three separates of igneous biotite from a sample of the Queshan gneissic granite, adjacent to the Pengjiakuang deposit, gave reproducible plateau ages of 124.6 +/- 0.6 to 123.9 +/- 0.4 Ma (2 sigma). Six sericite separates front two samples in the Rushan deposit yielded Ar-40/Ar-39 plateau ages at 109.3 +/- 0.3 to 107.7 +/- 0.5 Ma (2 sigma), whereas biotite from the Kunyushan monzogranite that hosts the Rushan deposit had plateau ages ranging from 129.0 +/- 0.6 to 126.9 +/- 0.6 Ma (3 separates front one sample). The apparent age gap between hydrothermal sericite and magmtic biotite from both deposits, together with the similar argon closure temperatures for these mica minerals, suggest that gold mineralization had no direct relationship to the granitoid magmatism. Instead, gold deposition coincided with the emplacement of mafic to intermediate dikes widespread in the jiaodong gold province, which have been dated at ca. 122 to 119 Ma and, less commonly, at 110 to 102 Ma. The new Ar-40/Ar-39 ages from the eastern jiaodong peninsula, when combined with published data from the western part suggest that gold mineralization was broadly contemporaneous throughout the district. The Early Cretaceous gold mineralization also is widely developed in four other major gold districts along the Tan-Lu fault. The temporal and spatial correlation of these gold deposits with mafic to intermediate dikes commonly found in most mineralized areas, the presence of well-documented metamorphic core complexes and half-graben basins along the Tan-Lu fault, and voluminous basalts therein, suggest that the Early Cretaceous was an important period of lithospheric extension, possibly caused by the late Mesozoic lithospheric thinning beneath the eastern block of the North China craton. Lithospheric thinning and extension could have resulted in abnormally high heat and fluid fluxes necessary for large-scaled gold mineralization.
Resumo:
As powerful tools to study the lithosphere dynamics, the effective elastic thickness (Te) as well as the envelope of yielding stress of lithosphere have been attracted great attention of geoscientists in the past thirty years. The oceanic lithosphere, contrary to the continental lithosphere, has more fruits for its simple structures and evolution process. In continent, the lithosphere commonly is complex and variable in the rheological, thermal structures, and has a complicated history. Therefore, the application of the effective elastic thickness in continent is still a subject to learn in a long time. Te, with the definition of the thickness of an elastic plate in theory flexured by the equal benging of the real stress in the lithosphere plate (Turcotte, 1982), marks the depth of transition between elastic and fluid behaviors of rocks subjected to stress exceeding 100 MPa over the geological timescales (McNutt, 1990). There are three methods often adapted: admittance or isostatic response function, coherence and forwarding. In principle, the models of Te consist of thermal-rheological, non-linear Maxwell, non-linear work hardening and rheological layered models. There is a tentative knowledge of Te that it is affected by the following factors: crustal thickness, crust-mantle decoupling, plate bending, boundary conditions of plate (end forces and bending moments), stress state, sedimentary layer, faulting effect, variation in the mountain belts' strike, foreland basin, inheritance of tectonic evolution, convection of mantle, seismic depth and lithosphere strength. In this thesis, the author introduces the geological sketch of the Dabie collisional orogenic belt and the Hefei Basin. The Dabie Mts. is famous for the ultra-high pressure metamorphism. The crustal materials subducted down to the depth of at least 100 km and exhumed. So that the front subjects arise such as the deeply subduction of continent, and the post-collisional crust-mantle interaction. In a geological journey at June of 1999, the author found the rarely variolitic basaltic andesite in the Dabie Mts. It occurs in Susong Group, near Zhifenghe Countryside, Susong County, Anhui Province. It is just to the south of the boundary between the high-grade Susong melange and the ultra-high grade South Dabie melange. It has a noticeable knobby or pitted appearance in the surface. The size of the varioles is about 1-4 mm. In hand-specimen and under microscope, there are distinct contacts between the varioles and the matrice. The mineralogy of the varioles is primarily radiate plagioclase, with little pyroxene, hornblende and quartz. The pyroxene, hornblende and quartz are in the interstices between plagioclase. The matrix is consisted of glass, and micro-crystals of chlorite, epidote and zoisite. It is clearly subjected and extensive alteration. The andesite has an uncommon chemical composition. The SiO_2 content is about 56.8%, TiO_2 = 0.9%, MgO = 6.4%, (Fe_2O_3)_(Total) = 6.7% ~ 7.6%, 100 Mg/(Mg+Fe) = 64.1 ~ 66.2. Mg# is significantly high. The andesite has higher abundances of large-lithophile trace elements (e.g. K, Ba, Sr, LREE), e.g. La/Nd = 5.56-6.07, low abundances of high-strength-field elements (HFSE, e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subducted-related magmas (Pearcce, 1982; Sun and McDonaugh, 1989). In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a characteristic of the continental margins (Pearce, 1982). There has a strongly enrichment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)_N is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)_N = 28.63-36.74, (La/Y)_N = 70.33 - 82.84. The elements Y and Yb depleted greatly, Y < 20 ppm, Y_N = 2.74-2.84, Yb_N = 2.18 - 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is -18.7 ~ -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the basaltic andesite was resulted from the post-collisional crust-mantle interaction between the subducted Yangze carton and the mantle of Sino-Korea carton. To obtain the Te of the lithosphere beneath the Dabie Mts. and the Hefei Basin, the author applies the coherence method in this thesis. The author makes two topography-gravity profiles (profiles 7~(th) and 9~(th)) across the Dabie Mts. and the Hefei Basin, and calculates the auto-coherence, across coherence, power spectrum, across power spectrum of the topography and gravity of the two profiles. From the relationships between the coherence and the wave-number of profiles. From the relationships between the coherence and the wave-number of profiles 7~(th) and 9~(th), it is obtained that the characteristic wavelengths respectively are 157 km and 126 km. Consequently the values of effective elastic thickness are 6.5 km and 4.8 km, respectively. However, the Te values merely are the minimum value of the lithosphere because the coherencemethod in a relative small region will generate a systemic underestimation. Why there is a so low Te value? In order to check the strength of the lithosphere beneath the Dabie Mts., the authore tries to outline the yielding-stress envelope of the lithosphere. It is suggested that the elastic layers in the crust and upper mantle are 18 km and 35 km, respectively. Since there exist a low viscosity layer about 3-5 km thickness, so it is reasonable that the decoupling between the crust and mantle occurred. So the effective thickness of the lithosphere can be estimated from the two elastic layers. Te is about 34 km. This is the maximum strength of the lithosphere. We can make an approximately estimation about the strength of the lithosphere beneath the Dabie Mts.: Te is about 20-30 km. The author believes that the following factors should be responsible for the low Te value: (1) the Dabie Mts. has elevated strongly since K_3-J_1. The north part of the Dabie Mts. elevates faster than the south part today; (2) there occur large active striking faults in this area. And in the east, the huge Tan-Lu striking fault anyway tends to decrease the lithosphere strength; (3) the lithosphere beneath the Dabie Mts. is heter-homogeneous in spatio-temporal; (4) the study area just locates in the adjacent region between the eastern China where the lithosphere thickness is significantly reduced and the normal western China. These factors will decrease the lithosphere strength.
Resumo:
Geological, petrochemical, and geochemical data are reported for volcanic rocks of a Cretaceous pull-apart basin in the Tan Lu strike-slip system, Asian continental margin. A comparison of these volcanic rocks with magmatic rocks from typical Cenozoic transform margins in the western North America and rift zones of Korea made it possible to distinguish some indicator features of transform-margin volcanic rocks. Magmatic rocks from strike-slip extension zones bear island-arc, intraplate, and occasionally depleted MORB geochemical signatures. In addition to calc-alkaline rocks there are bimodal volcanic series. The rocks are characterized by high K2O, MgO, and TiO2 contents. They show variable enrichment in LILE relative to HFSE, which is typical of island-arc magmas. At the same time they are rich in compatible transition elements, which is a characteristic of intraplate magmas. Trace element distribution patterns normalized to MORB or primitive mantle usually show a negative Ta-Nb anomaly typical of suprasubduction settings. Their Ta/Nb ratio is lower, whereas Ba/Nb, Ba/La, and La/Yb ratios are higher than those of some MORB and OIB. In terms of trace element systematics, for example, Ta-Th-Hf, Ba/La-(Ba/La)_n, (La/Sm)_n-La/Hf, and others, they fall within the area of mixing of magmas from several sources (island arc, intraplate, and depleted reservoirs). Magmatic rocks of transform settings show a sigmoidal chondrite-normalized REE distribution pattern with a negative slope of LREE, depletion in MREE, and an enriched or flat HREE pattern. Magmas with mixed geochemical characteristics presumably originated in a transform margin setting in local extension zones under influence of mantle diapirs, which caused metasomatism and melting of the lithosphere at different levels, and mixing of melts from different sources in variable proportions.