966 resultados para Talbot array illumination
Resumo:
The demand for more pixels is beginning to be met as manufacturers increase the native resolution of projector chips. Tiling several projectors still offers a solution to augment the pixel capacity of a display. However, problems of color and illumination uniformity across projectors need to be addressed as well as the computer software required to drive such devices. We present the results obtained on a desktop-size tiled projector array of three D-ILA projectors sharing a common illumination source. A short throw lens (0.8:1) on each projector yields a 21-in. diagonal for each image tile; the composite image on a 3×1 array is 3840×1024 pixels with a resolution of about 80 dpi. The system preserves desktop resolution, is compact, and can fit in a normal room or laboratory. The projectors are mounted on precision six-axis positioners, which allow pixel level alignment. A fiber optic beamsplitting system and a single set of red, green, and blue dichroic filters are the key to color and illumination uniformity. The D-ILA chips inside each projector can be adjusted separately to set or change characteristics such as contrast, brightness, or gamma curves. The projectors were then matched carefully: photometric variations were corrected, leading to a seamless image. Photometric measurements were performed to characterize the display and are reported here. This system is driven by a small PC cluster fitted with graphics cards and running Linux. It can be scaled to accommodate an array of 2×3 or 3×3 projectors, thus increasing the number of pixels of the final image. Finally, we present current uses of the display in fields such as astrophysics and archaeology (remote sensing).
Resumo:
In this paper, a small transmit array of transistor amplifiers illuminated by a passive array of microstrip patches in the reactive near-field region is investigated as a power-combining structure. The two cases considered are when the transmit array radiates in a free space and when a passive array similar to the one used for illumination collects the radiated power. A comparison of the performance of the proposed structure against the alternative one, which uses a conventional horn antenna as a power-launching/receiving device, is also presented.
Resumo:
This paper details an investigation of a power combiner that uses a reflect array of dual-feed aperture-coupled microstrip patch antennas and a corporate-fed dual-polarized array as a signal distributing/combining device. In this configuration, elements of the reflect array receive a linearly polarized wave and retransmit it with an orthogonal polarization using variable-length sections of microstrip lines connecting receive and transmit ports. By applying appropriate lengths of these delay lines, the array focuses the transmitted wave onto the feed array. The operation of the combiner is investigated for a small-size circular reflect array for the cases of -3 dB, -6 dB and -10 dB edge illumination by the 2 x 2-element dual-polarized array.
Resumo:
In this work, a new design concept of SMS moving optics is developed, in which the movement is no longer lateral but follows a curved trajectory calculated in the design process. Curved tracking trajectory helps to broaden the incident angle?s range significantly. We have chosen an afocal-type structure which aim to direct the parallel rays of large incident angles to parallel output rays. The RMS of the divergence angle of the output rays remains below 1 degree for an incident angular range of ±450. Potential applications of this beam-steering device are: skylights to provide steerable natural illumination, building integrated CPV systems, and steerable LED illumination.
Resumo:
We present theory and simulations for a spectral narrowing scheme for laser diode arrays (LDAs) that employs optical feedback from a diffraction grating. We calculate the effect of the so-called smile of the LDA and show that it is possible to reduce the effect by using a cylindrical lens set at an angle to the beam. The scheme is implemented on a 19-element LDA with smile of 7.6 mu m and yields frequency narrowing from a free-running width of 2 to 0.15 nm. The experimental results are in good agreement with the theory. (c) 2005 Optical Society of America.
Resumo:
We report on a theoretical study of an interferometric system in which half of a collimated beam from a broadband optical source is intercepted by a glass slide, the whole beam subsequently being incident on a diffraction grating and the resulting spectrum being viewed using a linear CCD array. Using Fourier theory, we derive the expression of the intensity distribution across the CCD array. This expression is then examined for non-cavity and cavity sources for different cases determined by the direction from which the slide is inserted into the beam and the source bandwidth. The theoretical model shows that the narrower the source linewidth, the higher the deviation of the Talbot bands' visibility (as it is dependent on the path imbalance) from the previously known triangular shape. When the source is a laser diode below threshold, the structure of the CCD signal spectrum is very complex. The number of components present simultaneously increases with the number of grating lines and decreases with the laser cavity length. The model also predicts the appearance of bands in situations not usually associated with Talbot bands.
Resumo:
We report on a theoretical study of an interferometric system in which half of a collimated beam from a broadband optical source is intercepted by a glass slide, the whole beam subsequently being incident on a diffraction grating and the resulting spectrum being viewed using a linear CCD array. Using Fourier theory, we derive the expression of the intensity distribution across the CCD array. This expression is then examined for non-cavity and cavity sources for different cases determined by the direction from which the slide is inserted into the beam and the source bandwidth. The theoretical model shows that the narrower the source linewidth, the higher the deviation of the Talbot bands' visibility (as it is dependent on the path imbalance) from the previously known triangular shape. When the source is a laser diode below threshold, the structure of the CCD signal spectrum is very complex. The number of components present simultaneously increases with the number of grating lines and decreases with the laser cavity length. The model also predicts the appearance of bands in situations not usually associated with Talbot bands.
Resumo:
In about 50% of first trimester spontaneous abortion the cause remains undetermined after standard cytogenetic investigation. We evaluated the usefulness of array-CGH in diagnosing chromosome abnormalities in products of conception from first trimester spontaneous abortions. Cell culture was carried out in short- and long-term cultures of 54 specimens and cytogenetic analysis was successful in 49 of them. Cytogenetic abnormalities (numerical and structural) were detected in 22 (44.89%) specimens. Subsequent, array-CGH based on large insert clones spaced at ~1 Mb intervals over the whole genome was used in 17 cases with normal G-banding karyotype. This revealed chromosome aneuplodies in three additional cases, giving a final total of 51% cases in which an abnormal karyotype was detected. In keeping with other recently published works, this study shows that array-CGH detects abnormalities in a further ~10% of spontaneous abortion specimens considered to be normal using standard cytogenetic methods. As such, array-CGH technique may present a suitable complementary test to cytogenetic analysis in cases with a normal karyotype.
Resumo:
We have modeled, fabricated, and characterized superhydrophobic surfaces with a morphology formed of periodic microstructures which are cavities. This surface morphology is the inverse of that generally reported in the literature when the surface is formed of pillars or protrusions, and has the advantage that when immersed in water the confined air inside the cavities tends to expel the invading water. This differs from the case of a surface morphology formed of pillars or protrusions, for which water can penetrate irreversibly among the microstructures, necessitating complete drying of the surface in order to again recover its superhydrophobic character. We have developed a theoretical model that allows calculation of the microcavity dimensions needed to obtain superhydrophobic surfaces composed of patterns of such microcavities, and that provides estimates of the advancing and receding contact angle as a function of microcavity parameters. The model predicts that the cavity aspect ratio (depth-to-diameter ratio) can be much less than unity, indicating that the microcavities do not need to be deep in order to obtain a surface with enhanced superhydrophobic character. Specific microcavity patterns have been fabricated in polydimethylsiloxane and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. The measured advancing and receding contact angles are in good agreement with the predictions of the model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466979]
Resumo:
Background data: Technology and physical exercise can enhance physical performance during aging. Objective: The purpose of this study was to investigate the effects of infrared-light-emitting diode (LED) illumination (850 nm) applied during treadmill training. Materials and methods: Twenty postmenopausal women participated in this study. They were randomly divided into two groups. The LED group performed treadmill training associated with infrared-LED illumination (n = 10) and the control group performed only treadmill training (n = 10). The training was performed during 3 months, twice a week during 30 min at intensities between 85 and 90% of maximal heart rate. The irradiation parameters were 31 mW/cm(2), treatment time 30 min, 14,400 J of total energy and 55.8 J/cm(2) of fluence. Physiological, biomechanical, and body composition parameters were measured at the baseline and after 3 months. Results: Both groups improved the time of tolerance limit (Tlim) (p < 0.05) during submaximal constant-speed testing. The peak torque did not differ between groups. However, the results showed significantly higher values of power [from 56 +/- 10 to 73 +/- 8W (p = 0.002)] and total work [from 1,537 +/- 295 to 1,760 +/- 262 J (p = 0.006)] for the LED group when compared to the control group [power: from 58 +/- 14 to 60 +/- 15W (p >= 0.05) and total work: from 1,504 +/- 404 to 1,622 +/- 418 J (p >= 0.05)]. The fatigue significantly increased for the control group [from 51 +/- 6 to 58 +/- 5 % (p = 0.04)], but not for the LED group [from 60 +/- 10 to 60 +/- 4 % (p >= 0.05)]. No significant differences in body composition were observed for either group. Conclusions: Infrared-LED illumination associated with treadmill training can improve muscle power and delay leg fatigue in postmenopausal women.
Resumo:
We report on some unusual behavior of the measured current-voltage characteristics (CVC) in artificially prepared two-dimensional unshunted array of overdamped Nb-AlO(x)-Nb Josephson junctions. The obtained nonlinear CVC are found to exhibit a pronounced (and practically temperature independent) crossover at some current I(cr) = (1/2 beta(C)-1)I(C) from a resistance R dominated state with V(R)=R root I(2)-I(C)(2) below I(cr) to a capacitance C dominated state with V(C) = root(h) over bar /4eC root I-I(C) above I(cr). The origin of the observed behavior is discussed within a single-plaquette approximation assuming the conventional resistively shunted junction model with a finite capacitance and the Ambegaokar-Baratoff relation for the critical current of the single junction. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3407566]
Resumo:
By numerically calculating the relevant electromagnetic fields and charge current densities, we show how local charges and currents near subwavelength structures govern light transmission through subwavelength apertures in a real metal film. The illumination of a single aperture generates surface waves; and in the case of slits, generates them with high efficiency and with a phase close to - pi with respect to a reference standing wave established at the metal film front facet. This phase shift is due to the direction of induced charge currents running within the slit walls. The surface waves on the entrance facet interfere with the standing wave. This interference controls the profile of the transmission through slit pairs as a function of their separation. We compare the calculated transmission profile for a two-slit array to simple interference models and measurements [Phys. Rev. B 77(11), 115411 (2008)]. (C) 2011 Optical Society of America
Resumo:
Catalytic ozonation has been recognized in the scientific community as an efficient technique, reaching elevated rates of recalcitrant organic material mineralization, even at the presence of scavenger species of hydroxyl free radicals. This study presents the most significant factors involving the leachate treatment stabilized by the municipal landfill of the city of Guaratingueta, State of Sao Paulo, Brazil, by using a catalytic ozonation activated by metallic ions Fe(3+), Zn(2+), Mn(2+), Ni(2+) and Cr(3+). The Taguchi L(16) orthogonal array and its associated statistical methods were also used in this study. Among the researched ions, the most notable catalysis was obtained with ferric ion, statistically significant in the reduction of COD with a confidence level of 99.5%.
Resumo:
This technical note develops information filter and array algorithms for a linear minimum mean square error estimator of discrete-time Markovian jump linear systems. A numerical example for a two-mode Markovian jump linear system, to show the advantage of using array algorithms to filter this class of systems, is provided.
Resumo:
An investigation of nucleate boiling on a vertical array of horizontal plain tubes is presented in this paper. Experiments were performed with refrigerant RI 23 at reduced pressures varying from 0.022 to 0.64, tube pitch to diameter ratios of 1.32, 1.53 and 2.00, and heat fluxes from 0.5 to 40 kW/m(2). Brass tubes with external diameters of 19.05 mm and average roughness of 0.12 mu m were used in the experiments. The effect of the tube spacing on the local heat transfer coefficient along the tube array was negligible within the present range of experimental conditions. For partial nucleate boiling, characterized by low heat fluxes, and low reduced pressures, the tube positioning shows a remarkable effect on the heat transfer coefficient. Based on these data, a general correlation for the prediction of the nucleate boiling heat transfer coefficient on a vertical array of horizontal tubes under flooded conditions was proposed. According to this correlation, the ratio between the heat transfer coefficients of a given tube and the lowest tube in the array depends only on the tube row number, the reduced pressure and the heat flux. By using the proposed correlation, most of the experimental heat transfer coefficients obtained in the present study were predicted within +/- 15%. The new correlation compares reasonably well with independent data from the literature. (C) 2008 Elsevier Inc. All rights reserved.