878 resultados para Tabu Search
Resumo:
Three types of shop scheduling problems, the flow shop, the job shop and the open shop scheduling problems, have been widely studied in the literature. However, very few articles address the group shop scheduling problem introduced in 1997, which is a general formulation that covers the three above mentioned shop scheduling problems and the mixed shop scheduling problem. In this paper, we apply tabu search to the group shop scheduling problem and evaluate the performance of the algorithm on a set of benchmark problems. The computational results show that our tabu search algorithm is typically more efficient and faster than the other methods proposed in the literature. Furthermore, the proposed tabu search method has found some new best solutions of the benchmark instances.
Resumo:
Non-orthogonal space-time block codes (STBC) with large dimensions are attractive because they can simultaneously achieve both high spectral efficiencies (same spectral efficiency as in V-BLAST for a given number of transmit antennas) as well as full transmit diversity. Decoding of non-orthogonal STBCs with large dimensions has been a challenge. In this paper, we present a reactive tabu search (RTS) based algorithm for decoding non-orthogonal STBCs from cyclic division algebras (CDA) having largedimensions. Under i.i.d fading and perfect channel state information at the receiver (CSIR), our simulation results show that RTS based decoding of 12 X 12 STBC from CDA and 4-QAM with 288 real dimensions achieves i) 10(-3) uncoded BER at an SNR of just 0.5 dB away from SISO AWGN performance, and ii) a coded BER performance close to within about 5 dB of the theoretical MIMO capacity, using rate-3/4 turbo code at a spectral efficiency of 18 bps/Hz. RTS is shown to achieve near SISO AWGN performance with less number of dimensions than with LAS algorithm (which we reported recently) at some extra complexity than LAS. We also report good BER performance of RTS when i.i.d fading and perfect CSIR assumptions are relaxed by considering a spatially correlated MIMO channel model, and by using a training based iterative RTS decoding/channel estimation scheme.
Resumo:
We propose a novel equalizer for ultrawideband (UWB) multiple-input multiple-output (MIMO) channels characterized by severe delay spreads. The proposed equalizer is based on reactive tabu search (RTS), which is a heuristic originally designed to obtain approximate solutions to combinatorial optimization problems. The proposed RTS equalizer is shown to perform increasingly better for increasing number of multipath components (MPC), and achieve near maximum likelihood (ML) performance for large number of MPCs at a much less complexity than that of the ML detector. The proposed RTS equalizer is shown to perform close to within 0.4 dB of single-input multiple-output AWGN performance at 10(-3) uncoded BER on a severely delay-spread UWB MIMO channel with 48 equal-energy MPCs.
Resumo:
We present a low-complexity algorithm based on reactive tabu search (RTS) for near maximum likelihood (ML) detection in large-MIMO systems. The conventional RTS algorithm achieves near-ML performance for 4-QAM in large-MIMO systems. But its performance for higher-order QAM is far from ML performance. Here, we propose a random-restart RTS (R3TS) algorithm which achieves significantly better bit error rate (BER) performance compared to that of the conventional RTS algorithm in higher-order QAM. The key idea is to run multiple tabu searches, each search starting with a random initial vector and choosing the best among the resulting solution vectors. A criterion to limit the number of searches is also proposed. Computer simulations show that the R3TS algorithm achieves almost the ML performance in 16 x 16 V-BLAST MIMO system with 16-QAM and 64-QAM at significantly less complexities than the sphere decoder. Also, in a 32 x 32 V-BLAST MIMO system, the R3TS performs close to ML lower bound within 1.6 dB for 16-QAM (128 bps/Hz), and within 2.4 dB for 64-QAM (192 bps/Hz) at 10(-3) BER.
Resumo:
In this paper, we are concerned with low-complexity detection in large multiple-input multiple-output (MIMO) systems with tens of transmit/receive antennas. Our new contributions in this paper are two-fold. First, we propose a low-complexity algorithm for large-MIMO detection based on a layered low-complexity local neighborhood search. Second, we obtain a lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search. The advantages of the proposed ML lower bound are i) it is easily obtained for MIMO systems with large number of antennas because of the inherent low complexity of the search algorithm, ii) it is tight at moderate-to-high SNRs, and iii) it can be tightened at low SNRs by increasing the number of symbols in the neighborhood definition. Interestingly, the proposed detection algorithm based on the layered local search achieves bit error performances which are quite close to this lower bound for large number of antennas and higher-order QAM. For e. g., in a 32 x 32 V-BLAST MIMO system, the proposed detection algorithm performs close to within 1.7 dB of the proposed ML lower bound at 10(-3) BER for 16-QAM (128 bps/Hz), and close to within 4.5 dB of the bound for 64-QAM (192 bps/Hz).