973 resultados para TRUNCATED INFLATED BETA DISTRIBUTION
Resumo:
The study of proportions is a common topic in many fields of study. The standard beta distribution or the inflated beta distribution may be a reasonable choice to fit a proportion in most situations. However, they do not fit well variables that do not assume values in the open interval (0, c), 0 < c < 1. For these variables, the authors introduce the truncated inflated beta distribution (TBEINF). This proposed distribution is a mixture of the beta distribution bounded in the open interval (c, 1) and the trinomial distribution. The authors present the moments of the distribution, its scoring vector, and Fisher information matrix, and discuss estimation of its parameters. The properties of the suggested estimators are studied using Monte Carlo simulation. In addition, the authors present an application of the TBEINF distribution for unemployment insurance data.
Resumo:
This paper considers the issue of modeling fractional data observed on [0,1), (0,1] or [0,1]. Mixed continuous-discrete distributions are proposed. The beta distribution is used to describe the continuous component of the model since its density can have quite different shapes depending on the values of the two parameters that index the distribution. Properties of the proposed distributions are examined. Also, estimation based on maximum likelihood and conditional moments is discussed. Finally, practical applications that employ real data are presented.
Resumo:
This paper proposes a general class of regression models for continuous proportions when the data contain zeros or ones. The proposed class of models assumes that the response variable has a mixed continuous-discrete distribution with probability mass at zero or one. The beta distribution is used to describe the continuous component of the model, since its density has a wide range of different shapes depending on the values of the two parameters that index the distribution. We use a suitable parameterization of the beta law in terms of its mean and a precision parameter. The parameters of the mixture distribution are modeled as functions of regression parameters. We provide inference, diagnostic, and model selection tools for this class of models. A practical application that employs real data is presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Reputation systems are employed to measure the quality of items on the Web. Incorporating accurate reputation scores in recommender systems is useful to provide more accurate recommendations as recommenders are agnostic to reputation. The ratings aggregation process is a vital component of a reputation system. Reputation models available do not consider statistical data in the rating aggregation process. This limitation can reduce the accuracy of generated reputation scores. In this paper, we propose a new reputation model that considers previously ignored statistical data. We compare our proposed model against state-of the-art models using top-N recommender system experiment.
Resumo:
Tsallis postulated a generalized form for entropy and give rise to a new statistics now known as Tsallis statistics. In the present work, we compare the Tsallis statistics with the gradually truncated Levy flight, and discuss the distribution of an economical index-the Standard and Poor's 500-using the values of standard deviation as calculated by our model. We find that both statistics give almost the same distribution. Thus we feel that gradual truncation of Levy distribution, after certain critical step size for describing complex systems, is a requirement of generalized thermodynamics or similar. The gradually truncated Levy flight is based on physical considerations and bring a better physical picture of the dynamics of the whole system. Tsallis statistics gives a theoretical support. Both statistics together can be utilized for the development of a more exact portfolio theory or to understand better the complexities in human and financial behaviors. A comparison of both statistics is made. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
We introduce a five-parameter continuous model, called the McDonald inverted beta distribution, to extend the two-parameter inverted beta distribution and provide new four- and three-parameter sub-models. We give a mathematical treatment of the new distribution including expansions for the density function, moments, generating and quantile functions, mean deviations, entropy and reliability. The model parameters are estimated by maximum likelihood and the observed information matrix is derived. An application of the new model to real data shows that it can give consistently a better fit than other important lifetime models. (C) 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
Bibliography: leaves 41-43.
Resumo:
Birnbaum and Saunders (1969a) introduced a probability distribution which is commonly used in reliability studies For the first time based on this distribution the so-called beta-Birnbaum-Saunders distribution is proposed for fatigue life modeling Various properties of the new model including expansions for the moments moment generating function mean deviations density function of the order statistics and their moments are derived We discuss maximum likelihood estimation of the model s parameters The superiority of the new model is illustrated by means of three failure real data sets (C) 2010 Elsevier B V All rights reserved
Resumo:
In this paper we present truncated differential analysis of reduced-round LBlock by computing the differential distribution of every nibble of the state. LLR statistical test is used as a tool to apply the distinguishing and key-recovery attacks. To build the distinguisher, all possible differences are traced through the cipher and the truncated differential probability distribution is determined for every output nibble. We concatenate additional rounds to the beginning and end of the truncated differential distribution to apply the key-recovery attack. By exploiting properties of the key schedule, we obtain a large overlap of key bits used in the beginning and final rounds. This allows us to significantly increase the differential probabilities and hence reduce the attack complexity. We validate the analysis by implementing the attack on LBlock reduced to 12 rounds. Finally, we apply single-key and related-key attacks on 18 and 21-round LBlock, respectively.
Resumo:
The present study on the characterization of probability distributions using the residual entropy function. The concept of entropy is extensively used in literature as a quantitative measure of uncertainty associated with a random phenomenon. The commonly used life time models in reliability Theory are exponential distribution, Pareto distribution, Beta distribution, Weibull distribution and gamma distribution. Several characterization theorems are obtained for the above models using reliability concepts such as failure rate, mean residual life function, vitality function, variance residual life function etc. Most of the works on characterization of distributions in the reliability context centers around the failure rate or the residual life function. The important aspect of interest in the study of entropy is that of locating distributions for which the shannon’s entropy is maximum subject to certain restrictions on the underlying random variable. The geometric vitality function and examine its properties. It is established that the geometric vitality function determines the distribution uniquely. The problem of averaging the residual entropy function is examined, and also the truncated form version of entropies of higher order are defined. In this study it is established that the residual entropy function determines the distribution uniquely and that the constancy of the same is characteristics to the geometric distribution
Resumo:
We propose two new residuals for the class of beta regression models, and numerically evaluate their behaviour relative to the residuals proposed by Ferrari and Cribari-Neto. Monte Carlo simulation results and empirical applications using real and simulated data are provided. The results favour one of the residuals we propose.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Gumbel distribution is perhaps the most widely applied statistical distribution for problems in engineering. We propose a generalization-referred to as the Kumaraswamy Gumbel distribution-and provide a comprehensive treatment of its structural properties. We obtain the analytical shapes of the density and hazard rate functions. We calculate explicit expressions for the moments and generating function. The variation of the skewness and kurtosis measures is examined and the asymptotic distribution of the extreme values is investigated. Explicit expressions are also derived for the moments of order statistics. The methods of maximum likelihood and parametric bootstrap and a Bayesian procedure are proposed for estimating the model parameters. We obtain the expected information matrix. An application of the new model to a real dataset illustrates the potentiality of the proposed model. Two bivariate generalizations of the model are proposed.
Resumo:
Ng and Kotz (1995) introduced a distribution that provides greater flexibility to extremes. We define and study a new class of distributions called the Kummer beta generalized family to extend the normal, Weibull, gamma and Gumbel distributions, among several other well-known distributions. Some special models are discussed. The ordinary moments of any distribution in the new family can be expressed as linear functions of probability weighted moments of the baseline distribution. We examine the asymptotic distributions of the extreme values. We derive the density function of the order statistics, mean absolute deviations and entropies. We use maximum likelihood estimation to fit the distributions in the new class and illustrate its potentiality with an application to a real data set.
Resumo:
In this article we study the univariate and bivariate truncated von Mises distribution, as a generalization of the von Mises distribution (\cite{jupp1989}), (\cite{mardia2000directional}). This implies the addition of two or four new truncation parameters in the univariate and, bivariate cases, respectively. The results include the definition, properties of the distribution and maximum likelihood estimators for the univariate and bivariate cases. Additionally, the analysis of the bivariate case shows how the conditional distribution is a truncated von Mises distribution, whereas the marginal distribution that generalizes the distribution introduced in \cite{repe}. From the viewpoint of applications, we test the distribution with simulated data, as well as with data regarding leaf inclination angles (\cite{safari}) and dihedral angles in protein chains (\cite{prote}). This research aims to assert this probability distribution as a potential option for modelling or simulating any kind of phenomena where circular distributions are applicable.\par