8 resultados para TRPV5


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TRPV5 and TRPV6 are two major calcium transport pathways in the human body maintaining calcium homeostasis. TRPV5 is mainly expressed in the distal convoluted and connecting tubule where it is the major, regulated pathway for calcium reabsorption. TRPV6 serves as an important calcium entry pathway in the duodenum and the placenta. Previously, we showed that human TRPV6 (hTRPV6) transports several heavy metals. In this study we tested whether human TRPV5 (hTRPV5) also transports cadmium and zinc, and whether hTRPV5 together with hTRPV6 are involved in cadmium and zinc toxicity. The hTRPV5 mRNA and protein were expressed in HEK293 cells transiently transfected with pTagRFP-C1-hTRPV5. The overexpression of the hTRPV5 protein at the plasma membrane was revealed by cell surface biotinylation and immunofluorescence techniques. We observed that both cadmium and zinc permeate hTRPV5 in ion imaging experiments using Fura-2 or Newport Green DCF. Our results were further confirmed using whole-cell patch clamp technique. Transient overexpression of hTRPV5 or hTRPV6 sensitized cells to cadmium and zinc. Toxicity curves of cadmium and zinc were also shifted in hTRPV6 expressing HEK293 cells clones. Our results suggest that TRPV5 and TRPV6 are crucial gates controlling cadmium and zinc levels in the human body especially under low calcium dietary conditions, when these channels are maximally upregulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TRPV6, a highly calcium-selective member of the transient receptor potential (TRP) channel superfamily, is a major pathway for calcium absorption in the fetal and adult body. It is expressed abundantly in the duodenum, the placenta and exocrine tissues. TRVP6 was postulated to contribute to store-operated calcium channel (SOC) activity in certain cell types such as exocrine cells. In this study, we tested 2-APB, a widely used SOC inhibitor on human TRPV6 (hTRPV6) activity using fluorescence imaging, patch clamp and radioactive tracer techniques in transiently and stably transfected HEK293 cells. We found that the basal calcium and cadmium influx was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells. 2-APB inhibited hTRPV6 activity in both transient and stably transfected cells. This effect was slightly sensitive toward extracellular calcium. The extracellular sodium concentration did not affect the inhibition of hTRPV6 by 2-APB. However, N-methyl-d-glucamine significantly diminished the inhibitory effect of 2-APB presumably through direct interaction with this compound. Furthermore, 2-APB inhibited the activity of TRPV6 orthologs but not human TRPV5. 2-APB may serve as a parental compound for the development of therapeutic strategies specifically targeting the hTRPV6 calcium channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ca2+ is essential for numerous physiological functions in our bodies. Therefore, its homeostasis is finely maintained through the coordination of intestinal absorption, renal reabsorption, and bone resorption. The Ca2+-selective epithelial channels TRPV5 and TRPV6 have been identified, and their physiological roles have been revealed: TRPV5 is important in final renal Ca2+ reabsorption, and TRPV6 has a key role in intestinal Ca2+ absorption. The TRPV5 knockout mice exhibit renal leak hypercalciuria and accordingly upregulate their intestinal TRPV6 expression to compensate for their negative Ca2+ balance. In contrast, despite their severe negative Ca2+ balance, TRPV6-null mice do not display any compensatory mechanism, thus resulting in secondary hyperparathyroidism. These results indicate that the genes for TRPV5 and TRPV6 are differentially regulated in human diseases associated with disturbed Ca2+ balance such as hypercalciuria, osteoporosis, and vitamin D-resistant rickets.