996 resultados para TROPICAL INSTABILITY WAVES
Resumo:
Data from four recent reanalysis projects [ECMWF, NCEP-NCAR, NCEP - Department of Energy ( DOE), NASA] have been diagnosed at the scale of synoptic weather systems using an objective feature tracking method. The tracking statistics indicate that, overall, the reanalyses correspond very well in the Northern Hemisphere (NH) lower troposphere, although differences for the spatial distribution of mean intensities show that the ECMWF reanalysis is systematically stronger in the main storm track regions but weaker around major orographic features. A direct comparison of the track ensembles indicates a number of systems with a broad range of intensities that compare well among the reanalyses. In addition, a number of small-scale weak systems are found that have no correspondence among the reanalyses or that only correspond upon relaxing the matching criteria, indicating possible differences in location and/or temporal coherence. These are distributed throughout the storm tracks, particularly in the regions known for small-scale activity, such as secondary development regions and the Mediterranean. For the Southern Hemisphere (SH), agreement is found to be generally less consistent in the lower troposphere with significant differences in both track density and mean intensity. The systems that correspond between the various reanalyses are considerably reduced and those that do not match span a broad range of storm intensities. Relaxing the matching criteria indicates that there is a larger degree of uncertainty in both the location of systems and their intensities compared with the NH. At upper-tropospheric levels, significant differences in the level of activity occur between the ECMWF reanalysis and the other reanalyses in both the NH and SH winters. This occurs due to a lack of coherence in the apparent propagation of the systems in ERA15 and appears most acute above 500 hPa. This is probably due to the use of optimal interpolation data assimilation in ERA15. Also shown are results based on using the same techniques to diagnose the tropical easterly wave activity. Results indicate that the wave activity is sensitive not only to the resolution and assimilation methods used but also to the model formulation.
Resumo:
Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.
Resumo:
Satellite and in situ observations in the equatorial Atlantic Ocean during 2002-03 show dominant spectral peaks at 40-60 days and secondary peaks at 10-40 days in sea level and thermocline within the intraseasonal period band (10-80 days). A detailed investigation of the dynamics of the intraseasonal variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Atlantic Ocean basin for the period 2000-03: one is forced by daily scatterometer winds from the Quick Scatterometer (QuikSCAT) satellite together with other forcing fields, and the other is forced by the low-passed 80-day version of the above fields. To help in understanding the role played by the wind-driven equatorial waves, a linear continuously stratified ocean model is also used. Within 3 degrees S-3 degrees N of the equatorial region, the strong 40-60-day sea surface height anomaly (SSHA) and thermocline variability result mainly from the first and second baroclinic modes equatorial Kelvin waves that are forced by intraseasonal zonal winds, with the second baroclinic mode playing a more important role. Sharp 40-50-day peaks of zonal and meridional winds appear in both the QuikSCAT and Pilot Research Moored Array in the Tropical Atlantic (PIRATA) data for the period 2002-03, and they are especially strong in 2002. Zonal wind anomaly in the central-western equatorial basin for the period 2000-06 is significantly correlated with SSHA across the equatorial basin, with simultaneous/ lag correlation ranging from-0.62 to 0.74 above 95% significance. Away from the equator (3 degrees-5 degrees N), however, sea level and thermocline variations in the 40-60-day band are caused largely by tropical instability waves (TIWs). On 10-40-day time scales and west of 10 degrees W, the spectral power of sea level and thermocline appears to be dominated by TIWs within 5 degrees S-5 degrees N of the equatorial region. The wind-driven circulation, however, also provides a significant contribution. Interestingly, east of 10 W, SSHA and thermocline variations at 10 40- day periods result almost entirely from wind-driven equatorial waves. During the boreal spring of 2002 when TIWs are weak, Kelvin waves dominate the SSHA across the equatorial basin (2 degrees S-2 degrees N). The observed quasi-biweekly Yanai waves are excited mainly by the quasi-biweekly meridional winds, and they contribute significantly to the SSHA and thermocline variations in 1 degrees-5 degrees N and 1 degrees-5 degrees S regions.
Resumo:
This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations. Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions, which replaces the parameterized eddy heat transport in the lower-resolution model. HiGEM is also able to more realistically simulate small-scale features in the wind stress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology. Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular, the small-scale interaction recently seen in satellite imagery between the atmosphere and tropical instability waves in the tropical Pacific Ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the tropical Pacific, which has important implications for climate variability. In particular, all aspects of the simulation of ENSO (spatial patterns, the time scales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.
Resumo:
In this study, the processes affecting sea surface temperature variability over the 1992–98 period, encompassing the very strong 1997–98 El Niño event, are analyzed. A tropical Pacific Ocean general circulation model, forced by a combination of weekly ERS1–2 and TAO wind stresses, and climatological heat and freshwater fluxes, is first validated against observations. The model reproduces the main features of the tropical Pacific mean state, despite a weaker than observed thermal stratification, a 0.1 m s−1 too strong (weak) South Equatorial Current (North Equatorial Countercurrent), and a slight underestimate of the Equatorial Undercurrent. Good agreement is found between the model dynamic height and TOPEX/Poseidon sea level variability, with correlation/rms differences of 0.80/4.7 cm on average in the 10°N–10°S band. The model sea surface temperature variability is a bit weak, but reproduces the main features of interannual variability during the 1992–98 period. The model compares well with the TAO current variability at the equator, with correlation/rms differences of 0.81/0.23 m s−1 for surface currents. The model therefore reproduces well the observed interannual variability, with wind stress as the only interannually varying forcing. This good agreement with observations provides confidence in the comprehensive three-dimensional circulation and thermal structure of the model. A close examination of mixed layer heat balance is thus undertaken, contrasting the mean seasonal cycle of the 1993–96 period and the 1997–98 El Niño. In the eastern Pacific, cooling by exchanges with the subsurface (vertical advection, mixing, and entrainment), the atmospheric forcing, and the eddies (mainly the tropical instability waves) are the three main contributors to the heat budget. In the central–western Pacific, the zonal advection by low-frequency currents becomes the main contributor. Westerly wind bursts (in December 1996 and March and June 1997) were found to play a decisive role in the onset of the 1997–98 El Niño. They contributed to the early warming in the eastern Pacific because the downwelling Kelvin waves that they excited diminished subsurface cooling there. But it is mainly through eastward advection of the warm pool that they generated temperature anomalies in the central Pacific. The end of El Niño can be linked to the large-scale easterly anomalies that developed in the western Pacific and spread eastward, from the end of 1997 onward. In the far-western Pacific, because of the shallower than normal thermocline, these easterlies cooled the SST by vertical processes. In the central Pacific, easterlies pushed the warm pool back to the west. In the east, they led to a shallower thermocline, which ultimately allowed subsurface cooling to resume and to quickly cool the surface layer.
Resumo:
This study analyzes and discusses data taken from oceanic and atmospheric measurements performed simultaneously at the Brazil-Malvinas Confluence (BMC) region in the southwestern Atlantic Ocean. This area is one of the most dynamical frontal regions of the world ocean. Data were collected during four research cruises in the region once a year in consecutive years between 2004 and 2007. Very few studies have addressed the importance of studying the air-sea coupling at the BMC region. Lateral temperature gradients at the study region were as high as 0.3 degrees C km(-1) at the surface and subsurface. In the oceanic boundary layer, the vertical temperature gradient reached 0.08 degrees C m(-1) at 500 m depth. Our results show that the marine atmospheric boundary layer (MABL) at the BMC region is modulated by the strong sea surface temperature (SST) gradients present at the sea surface. The mean MABL structure is thicker over the warmside of the BMC where Brazil Current (BC) waters predominate. The opposite occurs over the coldside of the confluence where waters from the Malvinas (Falkland) Current (MC) are found. The warmside of the confluence presented systematically higher MABL top height compared to the coldside. This type of modulation at the synoptic scale is consistent to what happens in other frontal regions of the world ocean, where the MABL adjusts itself to modifications along the SST gradients. Over warm waters at the BMC region, the MABL static instability and turbulence were increased while winds at the lower portion of the MABL were strong. Over the coldside of the BC/MC front an opposite behavior is found: the MABL is thinner and more stable. Our results suggest that the sea-level pressure (SLP) was also modulated locally, together with static stability vertical mixing mechanism, by the surface condition during all cruises. SST gradients at the BMC region modulate the synoptic atmospheric pressure gradient. Postfrontal and prefrontal conditions produce opposite thermal advections in the MABL that lead to different pressure intensification patterns across the confluence.
Resumo:
Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Some organisms that live just below the sea surface (the neuston) are known more as a matter of curiosity than as critical players in biogeochemical cycles. The hypothesis of this work is that their existence implies that they receive some food from an upward flux of organic matter. The behaviour of these organisms and of the associated organic matter, hereafter mentioned as floating biogenic material (FBM) is explored using a global physical-biogeochemical coupled model, in which its generation is fixed to 1% of primary production, and decay rate is of the order of I month. The model shows that the distribution of FBM should depart rapidly from that of primary production.. and be more sensitive to circulation patterns than to the distribution of primary production. It is trapped in convergence areas, where it reaches concentrations larger by a factor 10 than in divergences, thus enhancing and inverting the contrast between high and low primary productivity areas. Attention is called on the need to better understand the biogeochemical processes in the first meter of the ocean, as they may impact the distribution of food for fishes, as well as the conditions for air-sea exchange and for the interpretation of sea color.
Resumo:
Total organic carbon (TOC) was analyzed on four transects along 140°W in 1992 using a high temperature combustion/discrete injection (HTC/DI) analyzer. For two of the transects, the analyses were conducted on-board ship. Mixed-layer concentrations of organic carbon varied from about 80 µM C at either end of the transect (12°N and 12°S) to about 60 µM C at the equator. Total organic carbon concentrations decreased rapidly below the mixed-layer to about 38-40 µM C at 1000 m across the transect. Little variation was observed below this depth; deep water concentrations below 2000 m were virtually monotonic at about 36 µM C. Repeat measurements made on subsequent cruises consistently found the same concentrations at 1000 m or deeper, but substantial variations were observed in the mixed-layer and the upper water column above 400 m depth. Linear mixing models of total organic carbon versus sigmaT exhibited zones of organic carbon formation and consumption. TOC was found to be inversely correlated with apparent oxygen utilization (AOU) in the region between the mixed-layer and the oxygen minimum. In the mixed-layer, TOC concentrations varied seasonally. Part of the variations in TOC at the equator was driven by changes in the upwelling rate in response to variations in physical forcing related to an El Niño and to the passage of tropical instability waves. TOC export fluxes, calculated from simple box models, averaged 8±4 mmol C/m**2/day at the equator and also varied seasonally. These export fluxes account for 50-75% of the total carbon deficit and are consistent with other estimates and model predictions.
Resumo:
The nonlinear coupling between two perpendicularly propagating ( with respect to the external magnetic field direction) upper-hybrid ( UH) waves in a uniform magnetoplasma is considered, taking into account quasi-stationary density perturbations which are driven by the UH wave ponderomotive force. This interaction is governed by a pair of coupled nonlinear Schrodinger equations ( CNLSEs) for the UH wave envelopes. The CNLSEs are used to investigate the occurrence of modulational instability. Waves in the vicinity of the UH resonance are considered, so that the group dispersion terms for both waves are approximately equal, but the UH wave group velocities may be different. It is found that a pair of unstable UH waves ( obeying anomalous group dispersion) yields an increased instability growth rate, while a pair of stable UH waves ( individually obeying normal group dispersion) remains stable for equal group velocities, although it is destabilized by a finite group velocity mismatch. Stationary nonlinear solutions of the CNLSEs are presented.
Resumo:
We consider sound source mechanisms involving the acoustic and instability modes of dual-stream isothermal supersonic jets with the inner nozzle buried within an outer shroud-like nozzle. A particular focus is scattering into radiating sound waves at the shroud lip. For such jets, several families of acoustically coupled instability waves exist, beyond the regular vortical Kelvin-Helmholtz mode, with different shapes and propagation characteristics, which can therefore affect the character of the radiated sound. In our model, the coaxial shear layers are vortex sheets while the incident acoustic disturbances are the propagating shroud modes. The Wiener-Hopf method is used to compute their scattering at the sharp shroud edge to obtain the far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency of different mechanisms, which is particularly important in the upstream direction, where the results show that the scattered sound is more intense than that radiated directly by the shear-layer modes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is known theoretically [1-3] that infinitely long fluid loaded plates in mean flow exhibit a range of unusual phenomena in the 'long time' limit. These include convective instability, absolute instability and negative energy waves which are destabilized by dissipation. However, structures are necessarily of finite length and may have discontinuities. Moreover, linear instability waves can only grow over a limited number of cycles before non-linear effects become dominant. We have undertaken an analytical and computational study to investigate the response of finite, discontinuous plates to ascertain if these unusual effects might be realized in practice. Analytically, we take a "wave scattering" [2,4] - as opposed to a "modal superposition" [5] - view of the fluttering plate problem. First, we solve for the scattering coefficients of localized plate discontinuities and identify a range of parameter space, well outside the convective instability regime, where over-scattering or amplified reflection/transmission occurs. These are scattering processes that draw energy from the mean flow into the plate. Next, we use the Wiener-Hopf technique to solve for the scattering coefficients from the leading and trailing edges of a baffled plate. Finally, we construct the response of a finite, baffled plate by a superposition of infinite plate propagating waves continuously scattering off the plate ends and solve for the unstable resonance frequencies and temporal growth rates for long plates. We present a comparison between our computational results and the infinite plate theory. In particular, the resonance response of a moderately sized plate is shown to be in excellent agreement with our long plate analytical predictions. Copyright © 2010 by ASME.