944 resultados para TROPICAL GRASSES
Resumo:
The objective of this work was to evaluate the extent of protein contamination on Klason lignin (KL) in tropical grasses and legumes, and to propose an equation to estimate the protein-free content of Klason lignin (KLp). Five grass (30 samples) and 12 legume species (31 samples) were evaluated. Legumes had higher KL contents. Protein contamination was significant in both grasses and legumes, but greater in legume samples. The model to predict KLp was based on KL and crude protein (CP) contents, as follows: KLp = 0.8807KL - 0.0938KL x D - 0.00338CP (R2=0.935), in which D=0, for grasses, and D=1 for legumes.
Resumo:
The stable carbon isotopic composition of 165 grass species was determined with the objective of verifying their photosynthetic pathway (C3 and C4). The samples, taken from the INPA herbarium, were mainly collected in the North of Brazil. Approximately 60% of the species proved to be of the C4 type, with d 13C values ranging from -13.6 to -9.5, while the remainder 40% belonged to the C3 type, with values ranging from -34.7 to -23.4. This relatively high proportion of C3 species is probably due to the high relative humidity of the sites where the species were collected.
Resumo:
The experiment was carried out in the northwest region of the State of São Paulo-Brazil to evaluate ten grasses recently introduced in the region. The grasses studied were: Cynodon nlemfuensis cv. Tifton 68, C dacrylon cv. Tifton 78, Cynodon spp. cv. Tifton 85, C. dactylon cv. Florakirk, C. nlemfuensis cv. Florico, C nlemfuensis cv. Florona, C dactylon cv. Coastcross, Paspalum notation cv. Tifton and NDF (717 to 749 g.kg(-1)) were observed in the Cynodon cultivars while lower values of CP (102 and 107 g.kg(-1)) and NDF (697 and 705 g.kg(-1)) were registered in the cvs. Marandu and Tanzania 1. The contents of ADF were higher in the the cvs. Tanzania 1 and Tifton 9. The average values of IVDMD differed (Ppound0.05) among grasses and were all above 564 g.kg(-1), except for cv. Tifton-9 (499 g.kg(-1)). The results obtained in this work allowed to conclude that the cvs. Tifton 78, Tifton 85, Coastcross, Florona, and Tanzania 1 are interesting options for pastures establishment in the northwest region of the State of São Paulo-Brazil.
Resumo:
Effects of monensin (Mon) on performance of Holstein-Friesian cows fed tropical grasses and cane molasses (M) or cereal grain were examined in three experiments. In experiment I (incomplete 4 x 4 Latin square), three rumen-fistulated cows [188 I I days in milk (DIM)] were fed mixed diets based on rhodes grass (Chloris gayana cv. Callide) bay where M was substituted for wheat grain (W) at rates of 0 (MO), 125 (M 125) or 250 (M250) g/kg dry matter (DM). A fourth diet contained M250 plus 0.02 g Mon/kg DM (M250 + Mon). Substituting M for W tended (P < 0.10) to decrease the ratio of rumen molar proportions of acetate+butyrate (Bu):propionate (Pr) (4.3 versus 3.8 and 4.0 for M0, M125 and M250, respectively). There were no treatment effects (P> 0.10) on intake, organic matter digestibility, milk production or liveweight (LW) change. In experiment 2, 48 cows (173 &PLUSMN; 28.3 DIM) grazing kikuyu (Pennisetum clandestinum cv. common) pastures and supplemented with maize silage and a grain-based concentrate were offered either M (2.6 kg DM/(cow day)) or barley grain (B) (2.7 kg DM/(cow day)). Within each supplement type, half were fed 0 or 320 mg of Mon/(cow day). There were Mon x supplement interactions (Mon x S; P < 0.05) on the rumen molar proportion of Pr and Bu at 15:00 h, with B + Mon having the highest value for Pr (0.259 mmol/mmol) and lowest value for Bu (0.121 mmol/mmol). A Mon x S effect (P < 0.05) on milk fat content was noted with Mon causing a lower value regardless of energy source (31 and 36 g/l versus 40 and 38 g/l for B + Mon, M + Mon, B - Mon and M - Mon, respectively). As a main effect, M as opposed to B, reduced yields of milk (P < 0.05; 16.21/(cow day) versus 18.01/(cow day)) and protein (P < 0.05; 479 g/(cow day) versus 538 g/(cow day)). Monensin reduced milk fat yield (P < 0.05; 669 g/(cow day) versus 562 g/(cow day)), raised milk protein concentration (P < 0.05; 31 g/l versus 29 g/l) and caused LW gain rather than loss (P < 0.05; +0.06 kg/(cow day) versus -0.30 kg/(cow day)). No treatment effects on pasture intake were noted. In experiment 3, 48 cows (91 &PLUSMN; 16.1 DIM) grazing kikuyu pasture and supplemented with grain-based concentrate, sugar cane silage and 2.7 kg DM(cow day) of M were supplemented with either 0 or 320 mg Mon/(cow day). Monensin reduced (P < 0.05) milk fat content (33 g/l versus 30 g/l) and tended (P < 0.10) to reduce milk protein content (29 g/l versus 28 g/l). No effects of Mon on other milk production parameters, LW change or pasture intake were noted. Feeding monensin to mid-lactation Holstein-Friesian cows offered diets based on tropical grasses, and cane molasses or grain, improves rumen fermentation efficiency, thereby improving energy efficiency resulting in higher LW gain. Monensin had no effect on milk yield, but reduced milk fat concentration.
Resumo:
Five rates (0, 28.0, 65.4, 83.7 and 111.7 mm) of dairy effluent were applied through irrigation to tropical grass pasture during the wet season on the Atherton Tablelands in the Far North of Queensland, Australia. Irrigation water was applied to the treatments in inverse proportion to the effluent for equivalent total water application. Pastures were harvested on a three weekly basis, dry matter yield determined and sub samples analysed for N concentration (%), and Nitrogen yield (kg ha-1) calculated. Lysimeters installed in the high effluent treatment and the no effluent treatment measured leachate volume to 50 cm. Samples of leachate were analysed for nitrogen concentration and loss below 50 cm calculated. There was no significant difference in pasture yield and nitrogen yield among treatments. Loss of nitrogen through leachate was substantial in both the high effluent treatment and the zero effluent treatment.
Resumo:
A series of 3 experiments were conducted to evaluate the use of microalgae as supplements for ruminants consuming low-CP tropical grasses. In Exp. 1, the chemical composition and in vitro protein degradability of 9 algae species and 4 protein supplements were determined. In Exp. 2, rumen function and microbial protein (MCP) production were determined in Bos indicus steers fed speargrass hay alone or supplemented with Spirulina platensis, Chlorella pyrenoidosa, Dunaliella salina, or cottonseed meal (CSM). In Exp. 3, DMI and ADG were determined in B. indicus steers fed speargrass hay alone or supplemented with increasing amounts of NPN (urea combined with ammonia sulfate), CSM, or S. platensis. In Exp. 1, the CP content of S. platensis and C. pyrenoidosa (675 and 580 g/kg DM) was highest among the algae species and higher than the other protein supplements evaluated, and Schizochytrium sp. had the highest crude lipid (CL) content (198 g/kg DM). In Exp. 2, S. platensis supplementation increased speargrass hay intake, the efficiency of MCP production, the fractional outflow rate of digesta from the rumen, the concentration of NH3N, and the molar proportion of branched-chain fatty acids in the rumen fluid of steers above all other treatments. Dunaliella salina acceptance by steers was low and this resulted in no significant difference to unsupplemented steers for all parameters measured for this algae supplement. In Exp. 3, ADG linearly increased with increasing supplementary N intake from both S. platensis and NPN, with no difference between the 2 supplements. In contrast, ADG quadratically increased with increasing supplementary N intake from CSM. It was concluded that S. platensis and C. pyrenoidosa may potentially be used as protein sources for cattle grazing low-CP pastures.
Resumo:
Echinolaena inflexa (Poir.) Chase is an abundant C3 grass species with high biomass production in the Brazilian savanna (cerrado); Melinis minutiflora Beauv. is an African C4 forage grass widespread in cerrado and probably displacing some native herbaceous species. In the present work, we analysed seasonally the content and composition of soluble carbohydrates, the starch amounts and the above-ground biomass (phytomass) of E. inflexa and M. minutiflora plants harvested in two transects at 5 and 130 m from the border in a restrict area of cerrado at the Biological Reserve and Experimental Station of Mogi-Guaçu (SP, Brazil). Results showed that water soluble carbohydrates and starch amounts from the shoots of both species varied according to the time of the year, whilst in the underground organs, variations were observed mainly in relation to the transects. Marked differences in the pattern of the above-ground biomass production between these two grasses relative to their location in the Reserve were also observed, with two peaks of the invasive species (July and January) at the Reserve border. The differences in carbohydrate accumulation, partitioning and composition of individual sugars concerning time of the year and location in the Reserve were more related to the annual growth cycle of both grasses and possibly to specific physiological responses of M. minutiflora to disturbed environments in the Reserve border.
Resumo:
Objetivou- se verificar a existência de variação genética entre cultivares de capim- colonião quanto ao efeito da maturidade sobre a composição química e a digestibilidade, e classificar os genótipos de acordo com características produtivas e de qualidade nutricional. Utilizou- se o delineamento de blocos ao acaso, com parcelas subdivididas e três repetições, considerando parcelas as datas de corte e subparcelas, os genótipos. A produção de MS diferiu entre os genótipos somente aos 90 dias de crescimento, mas a porcentagem de folhas, colmos e material morto variou tanto aos 60 como aos 90 dias de crescimento. Ao contrário do observado para as folhas, a composição química e a digestibilidade do colmo apresentou grande variabilidade entre os genótipos. O colmo apresentou concentrações mais elevadas de FDN, FDA e lignina e menores valores de PB em comparação às folhas. Apresentou ainda maior digestibilidade da MS aos 60 dias de crescimento e maior digestibilidade da FDN aos 30 e 60 dias de crescimento. No agrupamento dos cultivares, os genótipos PM39 e PM47 foram apontados como os mais promissores no programa de melhoramento, por apresentarem alta produtividade e alta qualidade nutricional. A maturidade pouco afeta a digestibilidade de folhas em comparação ao colmo. Quando a participação de colmo no total de massa seca aumenta, esse componente passa a ser o limitador da qualidade de plantas forrageiras. Portanto, programas de melhoramento devem considerar, além da relação folha:colmo, também a digestibilidade in vitro da FDN do colmo na seleção de genótipos.
Resumo:
Warm-season grasses are economically important for cattle production in tropical regions, and tools to aid in management and research of these forages would be highly beneficial. Crop simulation models synthesize numerous physiological processes and are important research tools for evaluating production of warm-season grasses. This research was conducted to adapt the perennial CROPGRO Forage model to simulate growth of the tropical species palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. Xaraes] and to describe model adaptation for this species. In order to develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation and partitioning during a 2-year experiment with Xaraes palisadegrass in Piracicaba, SP, Brazil. Starting with parameters for the bahiagrass (Paspalum notatum Flugge) perennial forage model, dormancy effects had to be minimized, and partitioning to storage tissue/root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area (SLA) and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield per cycle was 3573 kg ha(-1), with a RMSE of 538 kg DM ha(-1) (D-Stat = 0.838, simulated/observed ratio = 1.028). The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of palisadegrass and can be used to simulate growth. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Theoretical analyses have shown the radiation use efficiency of maize, soybean, and peanut to increase with a decrease in the level of incident radiation and an increase in the proportion of diffuse radiation. This study compared the growth and radiation use efficiency of Panicum maximum cv. Petrie (green panic) and Bothriochloa insculpta cv. Bisset (creeping bluegrass) beneath shading treatments (birdguard and solarweave shadecloths) with that in full sunlight. A level of incident radiation reduced by 25% under birdguard shadecloth decreased final yield and final leaf area index, but increased canopy leaf nitrogen concentration and radiation use efficiency (19-14%) (compared with the full sun treatment). A similar level of reduced incident radiation under solarweave shadecloth (which provided an increased proportion of diffuse radiation), increased final yield and radiation use efficiency (46-50%). An understanding of the effects of composition of incident radiation on radiation use efficiency of tropical grasses enables more accurate estimation of potential pasture growth in shaded environments. It also has impact upon crop production in glasshouses and greenhouses.
Resumo:
Rusa deer were introduced to Queensland in the 1970s and 1980s, and they now are about half of the farmed deer herd. Rusa tolerate the subtropical climatic and disease environments. Rusa venison has a low fat content and is acceptable to consumers. Protein and energy requirements are similar to values for other tropical deer. Growth may be limited by the low protein content of tropical grasses during winter. Rusa deer could contribute to the diversity of the Australian livestock industries.
Resumo:
Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C) signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses) and C3 plants (including nearly all trees), and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to determine how vegetation composition in savannas is likely to be influenced by the continuing rise of CO2 concentration.
Resumo:
Forragens com alta umidade e baixa concentração de carboidratos solúveis, como é o caso dos capins tropicais, podem conduzir a condições desfavoráveis para a produção de silagens de qualidade satisfatória. Esse estudo objetivou conhecer o perfil fermentativo e microbiológico de silagens de capim-Marandu [Brachiaria brizantha (Hochst ex. A. Rich) Stapf cv. Marandu], colhido com 58 dias de crescimento, aditivadas com polpa cítrica peletizada (PCP),. Foram utilizados silos experimentais de PVC adaptados com válvula do tipo Bunsen, tendo a silagem atingindo densidade de 900 kg m-3. Os tratamentos foram constituídos por três proporções de PCP (0, 50 e 100 g kg-1 em relação a matéria natural) e sete tempos de abertura após a ensilagem (1, 4, 7, 14, 21, 28 e 56 dias). A presença de PCP aumentou os teores de CHOs em 15 a 20%, reduziu o pH (5,3 para 4,2) e diminuiu as concentrações de N-NH3. Houve crescimento da população de enterobactérias somente durante o primeiro dia de fermentação (média 3 UFC g-1), pequeno desenvolvimento de clostrideos (média 0,5 UFC g-1) e dominância de bactérias homo em relação às heterofermentativas, para os três tratamentos estudados. A adição de polpa cítrica durante a ensilagem do capim-Marandu foi benéfica, podendo ser recomendada desde que haja benefício econômico na sua adoção.
Resumo:
O experimento foi realizado com o objetivo de avaliar o efeito da idade sobre o potencial de degradação dos diferentes tecidos da lâmina foliar e do colmo de capim-braquiária (Brachiaria decumbens), capim-gordura (Melinis minutiflora) e capim-tifton 85 (Cynodon sp). Foram amostradas a 7ª (capim-braquiária e capim-gordura) e a 11ª (capim-tifton 85) lâminas foliares, no dia da exposição da lígula e 20 dias após. Por meio de observações ao microscópio foram estimadas a extensão da digestão in vitro dos tecidos da lâmina e do colmo e a redução na espessura da parede de células do esclerênquima do colmo. Lâminas foliares e segmentos de colmos jovens apresentaram maiores áreas digeridas. Permaneceram intactos os tecidos com células de parede espessada e lignificada, a bainha parenquimática dos feixes, o esclerênquima, o xilema e a epiderme do colmo. Tecidos com células de parede delgada, normalmente não-lignificada, o mesofilo, o floema e o parênquima, desapareceram completamente. O avanço na idade reduziu a digestão do mesofilo, em lâminas de capim-braquiária e capim-gordura, e do parênquima em colmos, principalmente de capim-gordura. A epiderme na lâmina foliar foi parcialmente digerida, independentemente da idade e da espécie. Embora aparentemente intactas, células esclerenquimáticas do colmo sofreram redução da espessura da parede com a incubação em líquido ruminal. A porcentagem de redução variou de 7 a 37% e a taxa de redução da espessura de 0,007 a 0,018 µm/h.
Resumo:
Objetivou-se estudar silagens de capim-marandu (Brachiaria brizantha) produzidas com quatro pressões de compactação (100, 120, 140 e 160 kg MS.m-3) durante a ensilagem. A forrageira foi colhida com 60 dias de crescimento vegetativo (32% de MS). O delineamento experimental utilizado foi o inteiramente casualizado com quatro repetições. Os dados relativos à produção de gás foram analisados por meio do modelo de medidas repetidas no tempo. As silagens produzidas com menores pressões de compactação apresentaram maior intensidade de produção de gases. em todos os tratamentos, houve baixa produção de efluente, como conseqüência do alto teor de MS da forragem no momento do corte. Nas maiores pressões de compactação, houve maior preservação dos teores de MS das silagens. Os valores de pH das silagens mais bem compactadas foram reduzidos em comparação aos daquelas com menor compactação, indicando que a maior densidade promoveu melhor ambiente para as bactérias produtoras de ácido lático. Os teores de N-NH3 (% N total) das silagens não foram influenciados pelas pressões de compactação durante a ensilagem; os resultados foram próximos aos considerados satisfatórios para conservação de gramíneas tropicais. A maior intensificação na compactação promoveu decréscimo nos valores de NIDN, fração B3, FDN e FDA e aumento na recuperação de MS e na digestibilidade verdadeira in vitro da MS.