143 resultados para TROPHOBLAST


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated expression of tumour necrosis factora (TNF-a) is associated with adverse pregnancy outcome. This study has examined the expression of TNF-a and its receptors (TNF-Rs) by mouse blastocysts and blastocyst outgrowths from day 4 to 9.5 of pregnancy and investigated the effects of elevated TNF-a on the inner cell mass (ICM) and trophoblast cells of blastocyst outgrowths. RTPCR demonstrated TNF-a mRNA expression from day 7.5 to 9.5, TNF-R1 from day 6.5 to 9.5 and TNF-R2 from day 5.5 to 7.5 of pregnancy, and in situ hybridisation revealed the trophoblast giant cells (TGCs) of the early placenta as the site of TNF-a expression. Day 4 blastocysts were cultured in a physiologically high concentration of TNF-a (100 ng/ml) for 72 h to the outgrowth stage and then compared to blastocysts cultured in media alone. TNF-a-treated blastocyst outgrowths exhibited a significant reduction in ICM cells (mean € SD 23.90€10.42 vs 9.37€7.45, t-test, P<0.0001) with no significant change in the numbers of trophoblast cells (19.97€8.14 vs 21.73€7.79, t-test, P=0.39). Within the trophoblast cell population, the TNF-a-treated outgrowths exhibited a significant increase in multinucleated cells (14.10€5.53 vs 6.37€5.80, t-test, P<0.0001) and a corresponding significant decrease in mononucleated cells (5.87€3.60 vs 15.37€5.87, t-test, P<0.0001). In summary, this study describes the expression of TNF-a and its receptors during the peri-implantation period in the mouse. It also reports that elevated TNF-a restricts ICM proliferation in the blastocyst and changes the ratio of mononucleated to multinucleated trophoblast cells. These findings suggest a mechanism by which increased

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Waddlia chondrophila (W. chondrophila) is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus). This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS: Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i.) and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways. CONCLUSIONS/SIGNIFICANCE: W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the developing mouse embryo, the diploid trophectoderm is known to undergo a diploid to giant cell transformation. These cells arise by a process of endoreduplication, characterized by replication of the entire genome without subsequent mitosis or cell division, leading to polyploidy and the formation of giant nuclei. Studies of 13.5 day rat trophoblast derived from the parietal yolk sac have indicated a relatively low rate of DNA polymerase a activity, the noinnal eukaryotic replicase, in comparison to that of DNA polymerase g. These results have suggested that endoreduplication in trophoblast giant cells may not employ the normal replicase enzyme, DNA polymerase a. In order to determine whether a 'switch' from DNA polymerase to DNA polymerase is a necessary concomitant of the diploid to giant cell transformation, two distinct populations of trophoblast giant cells, the primary giant cell derived from the mural trophectoderm and the secondary giant cell derived from the polar trophoectoderm were used. These two populations of trophoblast giant cells can be obtained from the tissue outgrowths of 3.5da blastocysts and the extraembryonic ectoderm (EX) and ectoplacental cone (EPC) of 7.5 day embryos respectively. Tissue outgrowths were treated with aphidicolin, a specific reversible inhibitor of eukaryotic DNA polymerase a, on various days after explantation. The effect of aphidicolin treatment was assessed both qualitatively, using autoradiography and quantitatively by scintillation counting and Feulgen staining. 3 DNA synthesis was measured in control and treated cultures after a Hthymidine pulse. Scintillation counts of the embryo proper revealed that DNA synthesis was consistently inhibited by greater than 907. in the presence of aphidicolin. Inhibition of DNA synthesis in the EX and EPC varied between 81-957. and 82-987. respectively, indicating that most DNA synthesis was mediated by DNA polymerase a, but that a small but significant amount of residual synthesis was indicated. A qualitative approach was then applied to determine whether the apparent residual DNA synthesis was restricted to a subpopulation of giant cells or whether all giant cells displayed a low level of DNA synthesis. Autoradiographs of the ICM of blastocysts and the embryo proper of 7.5da embryos, which acted as diploid control population, was completely inhibited regardless of duration in explant culture. In contrast, primary trophoblast giant cells derived from blastocysts and secondary giant cells derived from the EX and EPC were observed to possess some heavily labelled cells after aphidicolin treatment. These results suggest that although DNA polymerase a is the primary replicating enzyme responsible for endoreduplication in mouse trophoblast giant cells, some nonactivity is also observed. A DNA polymerase assay employing tissue lysates of outgrown 7.5da embryo, EX and EPC tissues was used to attempt to confirm the presence of higher nonactivity in tissues possessing trophoblast giant cells. Employing a series of inhibitors of DNA polymerases, it would appear that DNA polymerase a is the major polymerase active in all tissues of the 7.5da mouse embryo. The nature of the putative residual DNA synthetic activity could not be unequivically determined in this study. Therefore, these results suggest that both primary and secondary trophoblast giant cells possess and use DNA polymerase a in endoreduplicative DNA synthesis. It would appear that the high levels of DNA polymerase g activity reported in trophoblast tissue derived from the 13.5 da rat yolk sac was not a general feature of all endoreduplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide regulates many important cellular processes including motility and invasion. Many of its effects are mediated through the modification of specific cysteine residues in target proteins, a process called S-nitrosylation. Here we show that S-nitrosylation of proteins occurs at the leading edge of migrating trophoblasts and can be attributed to the specific enrichment of inducible nitric oxide synthase (iNOS/NOS2) in this region. Localisation of iNOS to the leading edge is co-incidental with a site of extensive actin polymerisation and is only observed in actively migrating cells. In contrast endothelial nitric oxide synthase (eNOS/NOS3) shows distribution that is distinct and non-colocalised with iNOS, suggesting that the protein S-nitrosylation observed at the leading edge is caused only by iNOS and not eNOS. We have identified MMP-9 as a potential target for S-nitrosylation in these cells and demonstrate that it co-localises with iNOS at the leading edge of migrating cells. We further demonstrate that iNOS plays an important role in promoting trophoblast invasion, which is an essential process in the establishment of a successful pregnancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Heparin can significantly reduce pregnancy complications in women with certain thrombophilias, such as antiphospholipid syndrome. Recent reports suggest that heparin may act by mechanisms other than anticoagulation. However, the effect of heparin on trophoblast biology in the absence of thrombophilia has not been extensively investigated. Therefore, this study aimed to evaluate trophoblast invasion, using an established cell line and primary extravillous trophoblasts (EVTs), following exposure to heparin and fractionated heparin. METHODS: An EVT cell line (SGHPL-4) was used to study invasion in the presence of hepatocyte growth factor (HGF) and varying concentrations of fractionated and unfractionated heparin. These experiments were repeated using first trimester primary EVTs. RESULTS: Both forms of heparin significantly reduced HGF-induced invasion in the SGHPL-4 cell line. This suppression of invasion appeared to be dose-dependent for fractionated heparin. In primary EVT cells, fractionated heparin also demonstrated significant suppression of invasion. CONCLUSIONS: Heparin has the potential to reduce trophoblast invasion in cell lines and first trimester EVT cells. This article highlights the need for further evaluation of these medications in vitro and in vivo, especially when used in the absence of thrombophilic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although not belonging to the class of professional phagocytes, in many species trophoblast cells exhibit intense phagocytic activity. The complete range of physiological functions of trophoblast phagocytosis has not yet been fully characterized. Close association between the trophoblast and nutrition was determined many years ago. Hubrecht (1889) when proposing for the first time the name trophoblast to the external layer of the blastocyst, directly established the nutritive significance of this embryonic layer. Indeed, histotrophic phagocytosis, i.e. the internalization of maternal cells and secreted materials, is considered an important function of the trophoblast before the completion of the placenta. Recently, however, unexpected characteristics of the trophoblast have significantly enhanced our understanding of this process. Roles in acquisition of space for embryo development, in tissue remodeling during implantation and placentation and in defense mechanisms are highlighting how this cellular activity may be relevant for the maternal-fetal relationship beyond its nutritional function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey of existing data suggests that trophoblast cells produce factors involved in extracellular matrix degradation. In this study, we correlated the expression of cathepsins D and B in the murine ectoplacental cone with the ultrastructural progress of decidual invasion by trophoblast cells. Both proteases were immunolocalized at implantation sites in lysosome-endosome-like compartments of trophoblast giant cells. Cathepsin D, but not cathepsin B, was also detected ultrastructurally in extracellular compartments surrounded by processes of the invading trophoblast containing extracellular matrix components and endometrial cell debris. The expression of cathepsins D and B by trophoblast cells was confirmed by RT-PCR in ectoplacental cones isolated from implantation chambers at gestation day 7.5. Our data addressed a positive relationship between the expression and presence of cathepsin D at the extracellular compartment of the maternal-fetal interface and the invasiveness of the trophoblast during the postimplantation period, suggesting a participation of invading trophoblast cells in the cathepsin D release. Such findings indicate that mouse trophoblast cells might exhibit a proteolytic ability to partake in the decidual invasion process at the maternal-fetal interface. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neospora caninum is an aplicomplexan parasite that has brought several concerns to cattle raisers worldwide due to its relationship to fetal loss. However, the mechanism of the parasite's transplacental infection and induced abortions are not completely understood. Bovine trophoblastic binucleated cells (BNC) play a major role in the maternal-fetal interactions, migrating during the entire pregnancy from chorionic connections to uterine epithelium. This study aimed to investigate the possible role of BNC as phagocytic cells and its participation in the bovine transplacental infection of N. caninum. BNC was isolated by discontinuous Percoll gradient, and characterized by Hoeschst 33342 nucleus-specific staining. Isolated BNC were cultured in DMEM supplemented with 10% bovine fetal serum, and infected with 10(4) tachyzoites of N. caninum NC-1 strain. Parasite invasion was visualized by indirect immunofluorescence and Giemsa technique. Multiplication of parasites took place in 2-3 day cycles. Healthy cows' placenta and normal and infected cultured BNC was immunostained with monoclonal antibodies against CD-163, MAC-387 and NOS, demonstrating their phagocyte capacity. Thus, BNC was characterized as cells with macrophagic activity, which may host N. caninum in vitro. Therefore, we may conclude that BNC could potentially participate in the transplacental infection of bovine neosporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis and its associated regulatory mechanisms are physiological events crucial to the maintenance of placental homeostasis; imbalance of these processes, however, such as occurs under various pathological conditions, may compromise placenta function and, consequently, pregnancy success. Increased apoptosis occurs in the placentas of pregnant women with several developmental disabilities, while increased Bcl-2 expression is generally associated with pregnancy-associated tumors. Herein, we tested the hypothesis that apoptosis-associated disturbs might be involved in the placental physiopathology subjected to different maternal hyperglycemic conditions.Thus, in the present study we investigated and compared the incidence of apoptosis using TUNEL reaction and Bcl-2 expression, in term-placentas of normoglycemic, diabetic and daily hyperglycemic patients. Tissue samples were collected from 37 placentas, being 15 from healthy mothers with normally delivered healthy babies, and 22 from mothers with glucose disturbances. From these latter 22 patients, 10 showed maternal daily hyperglycemia and 12 were clinically diabetics. Both Bcl-2 expression and apoptotic DNA fragmentation were established and quantified in the trophoblasts of healthy mothers. Compared to these reference values, a higher apoptosis index and lower Bcl-2 expression were disclosed in the placentas of the diabetic women, while in the daily hyperglycemic group, values were intermediate between the diabetic and normoglycemic patients. The TUNEL/Bcl-2 index ratio in the placentas varied from 0.02 to 0.09 for pregnant normoglycemic and diabetic women, respectively, revealing a predominance of apoptosis in the diabetic group. Our findings suggest that hyperglycemia may be a key factor evoking apoptosis in the placental trophoblast, and therefore, is relevant to diabetic placenta function. (c) 2006 Elsevier B.V.. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [ reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.