951 resultados para TRANSCRIPTIONAL COACTIVATORS
Resumo:
Mediator proteins are required for transcriptional regulation of most genes in yeast. Mammalian Mediator homologs also function as transcriptional coactivators in vitro; however, their physiological role in gene-specific transcription is not yet known. To determine the role of Mediator proteins in the development of complex organisms, we purified putative Mediator complexes from Caenorhabditis elegans and analyzed their phenotypes in vivo. C. elegans Mediator homologs were assembled into two multiprotein complexes. RNA interference assays showed that the CeMed6, CeMed7, and CeMed10/CeNut2 gene products are required for the expression of developmentally regulated genes, but are dispensable for expression of the ubiquitously expressed genes tested in this study. Therefore, the gene-specific function of Mediator as an integrator of transcriptional regulatory signals is evolutionarily conserved and is essential for C. elegans development.
Resumo:
Host Cell Factor-1 (HCF-1, C1) was first identified as a cellular target for the herpes simplex virus transcriptional activator VP16. Association between HCF and VP16 leads to the assembly of a multiprotein enhancer complex that stimulates viral immediate-early gene transcription. HCF-1 is expressed in all cells and is required for progression through G1 phase of the cell cycle. In addition to VP16, HCF-1 associates with a cellular bZIP protein known as LZIP (or Luman). Both LZIP and VP16 contain a four-amino acid HCF-binding motif, recognized by the N-terminal β-propeller domain of HCF-1. Herein, we show that the N-terminal 92 amino acids of LZIP contain a potent transcriptional activation domain composed of three elements: the HCF-binding motif and two LxxLL motifs. LxxLL motifs are found in a number of transcriptional coactivators and mediate protein–protein interactions, notably recognition of the nuclear hormone receptors. LZIP is an example of a sequence-specific DNA-binding protein that uses LxxLL motifs within its activation domain to stimulate transcription. The LxxLL motifs are not required for association with the HCF-1 β-propeller and instead interact with other regions in HCF-1 or recruit additional cofactors.
Resumo:
In eukaryotes, sequence-specific DNA-binding proteins activate gene expression by recruiting the transcriptional apparatus and chromatin remodeling proteins to the promoter through protein-protein contacts. In many instances, the connection between DNA-binding proteins and the transcriptional apparatus is established through the intermediacy of adapter proteins known as coactivators. Here we describe synthetic molecules with low molecular weight that act as transcriptional coactivators. We demonstrate that a completely nonnatural activation domain in one such molecule is capable of stimulating transcription in vitro and in vivo. The present strategy provides a means of gaining external control over gene activation through intervention using small molecules.
Resumo:
It is well established that the coordinated regulation of activity-dependent gene expression by the histone acetyltransferase (HAT) family of transcriptional coactivators is crucial for the formation of contextual fear and spatial memory, and for hippocampal synaptic plasticity. However, no studies have examined the role of this epigenetic mechanism within the infralimbic prefrontal cortex (ILPFC), an area of the brain that is essential for the formation and consolidation of fear extinction memory. Here we report that a postextinction training infusion of a combined p300/CBP inhibitor (Lys-CoA-Tat), directly into the ILPFC, enhances fear extinction memory in mice. Our results also demonstrate that the HAT p300 is highly expressed within pyramidal neurons of the ILPFC and that the small-molecule p300-specific inhibitor (C646) infused into the ILPFC immediately after weak extinction training enhances the consolidation of fear extinction memory. C646 infused 6 h after extinction had no effect on fear extinction memory, nor did an immediate postextinction training infusion into the prelimbic prefrontal cortex. Consistent with the behavioral findings, inhibition of p300 activity within the ILPFC facilitated long-term potentiation (LTP) under stimulation conditions that do not evoke long-lasting LTP. These data suggest that one function of p300 activity within the ILPFC is to constrain synaptic plasticity, and that a reduction in the function of this HAT is required for the formation of fear extinction memory.
Resumo:
The Hippo pathway restricts the activity of transcriptional coactivators TAZ (WWTR1) and YAP. TAZ and YAP are reported to be overexpressed in various cancers, however, their prognostic significance in colorectal cancers remains unstudied. The expression levels of TAZ and YAP, and their downstream transcriptional targets, AXL and CTGF, were extracted from two independent colon cancer patient datasets available in the Gene Expression Omnibus database, totaling 522 patients. We found that mRNA expressions of both TAZ and YAP were positively correlated with those of AXL and CTGF (p<0.05). High level mRNA expression of TAZ, AXL or CTGF significantly correlated with shorter survival. Importantly, patients co-overexpressing all 3 genes had a significantly shorter survival time, and combinatorial expression of these 3 genes was an independent predictor for survival. The downstream target genes for TAZ-AXL-CTGF overexpression were identified by Java application MyStats. Interestingly, genes that are associated with colon cancer progression (ANTXR1, EFEMP2, SULF1, TAGLN, VCAN, ZEB1 and ZEB2) were upregulated in patients co-overexpressing TAZ-AXL-CTGF. This TAZ-AXL-CTGF gene expression signature (GES) was then applied to Connectivity Map to identify small molecules that could potentially be utilized to reverse this GES. Of the top 20 small molecules identified by connectivity map, amiloride (a potassium sparing diuretic,) and tretinoin (all-trans retinoic acid) have shown therapeutic promise in inhibition of colon cancer cell growth. Using MyStats, we found that low level expression of either ANO1 or SQLE were associated with a better prognosis in patients who co-overexpressed TAZ-AXL-CTGF, and that ANO1 was an independent predictor of survival together with TAZ-AXL-CTGF. Finally, we confirmed that TAZ regulates Axl, and plays an important role in clonogenicity and non-adherent growth in vitro and tumor formation in vivo. These data suggest that TAZ could be a therapeutic target for the treatment of colon cancer.
Resumo:
CREB-binding proteins (CBP) and p300 are essential transcriptional coactivators for a large number of regulated DNA-binding transcription factors, including CREB, nuclear receptors, and STATs. CBP and p300 function in part by mediating the assembly of multiprotein complexes that contain additional cofactors such as p300/CBP interacting protein (p/CIP), a member of the p160/SRC family of coactivators, and the p300/CBP associated factor p/CAF. In addition to serving as molecular scaffolds, CBP and p300 each possess intrinsic acetyltransferase activities that are required for their function as coactivators. Here we report that the adenovirus E1A protein inhibits the acetyltransferase activity of CBP on binding to the C/H3 domain, whereas binding of CREB, or a CREB/E1A fusion protein to the KIX domain, fails to inhibit CBP acetyltransferase activity. Surprisingly, p/CIP can either inhibit or stimulate CBP acetyltransferase activity depending on the specific substrate evaluated and the functional domains present in the p/CIP protein. While the CBP interaction domain of p/CIP inhibits acetylation of histones H3, H4, or high mobility group by CBP, it enhances acetylation of other substrates, such as Pit-1. These observations suggest that the acetyltransferase activities of CBP/p300 and p/CAF can be differentially modulated by factors binding to distinct regions of CBP/p300. Because these interactions are likely to result in differential effects on the coactivator functions of CBP/p300 for different classes of transcription factors, regulation of CBP/p300 acetyltransferase activity may represent a mechanism for integration of diverse signaling pathways.
Resumo:
Most of the activities of IFN-γ are the result of STAT1-mediated transcriptional responses. In this study, we show that the BRCA1 tumor suppressor acts in concert with STAT1 to differentially activate transcription of a subset of IFN-γ target genes and mediates growth inhibition by this cytokine. After IFN-γ treatment, induction of the cyclin-dependent kinase inhibitor, p21WAF1, was synergistically activated by BRCA1, whereas the IRF-1 gene was unaffected. Importantly, the differential induction of p21WAF1 was impaired in breast cancer cells homozygous for the mutant BRCA1 5382C allele. Biochemical analysis illustrated that the mechanism of this transcriptional synergy involves interaction between BRCA1 aa 502–802 and the C-terminal transcriptional activation domain of STAT1 including Ser-727 whose phosphorylation is crucial for transcriptional activation. Significantly, STAT1 proteins mutated at Ser-727 bind poorly to BRCA1, reinforcing the importance of Ser-727 in the recruitment of transcriptional coactivators by STAT proteins. These findings reveal a novel mechanism for BRCA1 function in the IFN-γ-dependent tumor surveillance system.
Resumo:
Interferon γ (IFN-γ) induces rapid tyrosine phosphorylation of the latent cytoplasmic transcription factor, Stat1, which then forms homodimers, translocates to the nucleus and participates in IFN-γ-induced transcription. However, little is known of the interactions between Stat1 and the general transcription machinery during transcriptional activation. We show here that Stat1 can directly interact with the CREB-binding protein (CBP)/p300 family of transcriptional coactivators. Specifically, two interaction regions were identified: the amino-terminal region of Stat1 interacts with the CREB-binding domain of CBP/p300 and the carboxyl-terminal region of Stat1 interacts with the domain of CBP/p300 that binds adenovirus E1A protein. Transfection experiments suggest a role for these interactions in IFN-γ-induced transcription. Because CBP/p300-binding is required for the adenovirus E1A protein to regulate transcription of many genes during viral replication and cellular transformation, it is possible that the anti-viral effect of IFN-γ is based at least in part on direct competition by nuclear Stat1 with E1A for CBP/p300 binding.
Resumo:
The cAMP-response element-binding protein (CREB)-binding protein and p300 are two highly conserved transcriptional coactivators and histone acetyltransferases that integrate signals from diverse signal transduction pathways in the nucleus and also link chromatin remodeling with transcription. In this report, we have examined the role of p300 in the control of the G1 phase of the cell cycle in nontransformed immortalized human breast epithelial cells (MCF10A) and fibroblasts (MSU) by using adenovirus vectors expressing p300-specific antisense sequences. Quiescent MCF10A and MSU cells expressing p300-specific antisense sequences synthesized p300 at much reduced levels and exited G1 phase without serum stimulation. These cells also showed an increase in cyclin A and cyclin A- and E-associated kinase activities characteristic of S phase induction. Further analysis of the p300-depleted quiescent MCF10A cells revealed a 5-fold induction of c-MYC and a 2-fold induction of c-JUN. A direct target of c-MYC, CAD, which is required for DNA synthesis, was also found to be up-regulated, indicating that up-regulation of c-MYC functionally contributed to DNA synthesis. Furthermore, S phase induction in p300-depleted cells was reversed when antisense c-MYC was expressed in these cells, indicating that up-regulation of c-MYC may directly contribute to S phase induction. Adenovirus E1A also induced DNA synthesis and increased the levels of c-MYC and c-JUN in serum-starved MCF10A cells in a p300-dependent manner. Our results suggest an important role of p300 in cell cycle regulation at G1 and raise the possibility that p300 may negatively regulate early response genes, including c-MYC and c-JUN, thereby preventing DNA synthesis in quiescent cells.
Resumo:
Smads are signal mediators for the members of the transforming growth factor-β (TGF-β) superfamily. Upon phosphorylation by the TGF-β receptors, Smad3 translocates into the nucleus, recruits transcriptional coactivators and corepressors, and regulates transcription of target genes. Here, we show that Smad3 activated by TGF-β is degraded by the ubiquitin–proteasome pathway. Smad3 interacts with a RING finger protein, ROC1, through its C-terminal MH2 domain in a ligand-dependent manner. An E3 ubiquitin ligase complex ROC1-SCFFbw1a consisting of ROC1, Skp1, Cullin1, and Fbw1a (also termed βTrCP1) induces ubiquitination of Smad3. Recruitment of a transcriptional coactivator, p300, to nuclear Smad3 facilitates the interaction with the E3 ligase complex and triggers the degradation process of Smad3. Smad3 bound to ROC1-SCFFbw1a is then exported from the nucleus to the cytoplasm for proteasomal degradation. TGF-β/Smad3 signaling is thus irreversibly terminated by the ubiquitin–proteasome pathway.
Resumo:
p300 and its family member, CREB-binding protein (CBP), function as key transcriptional coactivators by virtue of their interaction with the activated forms of certain transcription factors. In a search for additional cellular targets of p300/CBP, a protein-protein cloning strategy, surprisingly identified SRC-1, a coactivator involved in nuclear hormone receptor transcriptional activity, as a p300/CBP interactive protein. p300 and SRC-1 interact, specifically, in vitro and they also form complexes in vivo. Moreover, we show that SRC-1 encodes a new member of the basic helix-loop-helix-PAS domain family and that it physically interacts with the retinoic acid receptor in response to hormone binding. Together, these results implicate p300 as a component of the retinoic acid signaling pathway, operating, in part, through specific interaction with a nuclear hormone receptor coactivator, SRC-1.
Resumo:
Androgens control a variety of developmental processes that create the male phenotype and are important for maintaining male fertility and normal functions of tissues and organs that are not directly involved in procreation. Androgen receptor (AR) that mediates the biological actions of androgens is a member of the nuclear receptor superfamily of ligand-inducible transcription factors. Although AR was cloned over 15 years ago, the mechanisms by which it regulates gene expression are not well understood. A growing body of in vitro experimental evidence suggests that a complex network of proteins is involved in the androgen-dependent transcriptional regulation. However, the process of AR-dependent transcriptional regulation under physiological conditions is largely elusive. In the present study, a series of experiments were performed, including quantitative chromatin immunoprecipitation (ChIP) assays, to investigate AR-mediated transcription process using living prostate cancer cells. Our results show that the loading of AR and recruitment of coactivators and RNA polymerase II (Pol II) to both the promoter and enhancer of AR target genes are a transient and cyclic event that in addition to hyperacetylation, also involves dynamic changes in methylation, phosphorylation of core histone H3 in androgen-treated LNCaP cells. The dynamics of testosterone (T)-induced loading of AR onto the proximal promoters of the genes clearly differed from that loaded onto the distal enhancers. Significantly, more holo-AR was loaded onto the enhancers than the promoters, but the principal Pol II transcription complex was assembled on the promoters. By contrast, the pure antiandrogen bicalutamide (CDX) complexed to AR elicited occupancy of the PSA promoter, but was unable to load onto the PSA enhancer and was incapable of recruiting Pol II, coactivators and following changes of covalent histone modifications. The partial antagonist cyproterone acetate (CPA) and mifepristone (RU486) were capable of promoting AR loading onto both the PSA promoter and enhancer at a comparable efficiency with androgen in LNCaP cells expressing mutant AR. However, CPA- and RU486-bound AR not only recruited Pol II and coactivator p300 and GRIP1 onto the promoter and enhancer, but also recruited the corepressor NCoR onto the promoter as efficiently as CDX. In addition, we demonstrate that both proteasome and protein kinases are implicated in AR-mediated transcription. Even though proteasome inhibitor MG132 and protein kinase inhibitor DRB (5, 6-Dichlorobenzimidazole riboside) can block ligand-dependent accumulation of PSA mRNA with same efficiency, their use results in different molecular profiles in terms of the formation of AR-mediated transcriptional complex. Collectively, these results indicate that transcriptional activation by AR is a complicated process, which includes transient loading of holo-AR and recruitment of Pol II and coregulators accompanied by a cascade of distinct covalent histone modifications; This process involves both the promoter and enhancer elements, as well as other general components of the cell machineries e.g. proteasome and protein kinase; The pure antiandrogen CDX and the partial antagonist CPA and RU486 exhibit clearly different profiles in terms of their ability to induce the formation of AR-dependent transcriptional complexes and the histone modifications associated with the target genes in human prostate cancer cells. Finally, by using quantitative RT-PCR to compare the expression of sixteen AR co-regulators in prostate cancer cell lines, xenografts, and clinical prostate cancer specimens we suggest that AR co-regulators protein inhibitor of activated STAT1 (PIAS1) and steroid receptor coactivator 1(SRC1) could be involved in the progression of prostate cancer.
Resumo:
Both the estrogen receptor (ER) and thyroid hormone receptor (TR) are members of the nuclear receptor superfamily. Two isoforms of the ER, alpha and beta, exist. The TRalpha and beta isoforms are products of two distinct genes that are further differentially spliced to give TRalpha1 and alpha2, TRbeta1 and beta2. The TRs have been shown to interfere with ER-mediated transcription from both the consensus estrogen response element (ERE) and the rat preproenkephalin (PPE) promoter, possibly by competing with ER binding to the ERE or by squelching coactivators essential for ER-mediated transcription. The rat oxytocin receptor (OTR) gene is thought to be involved in several facets of reproductive and affiliative behaviors. 17beta-Estradiol-bound ERs upregulate the OTR gene in the ventromedial hypothalamus, a region critical for the induction of lordosis behavior in several species. We investigated the effects of the ligand-binding TR isoforms on the ER-mediated transcription from a physiological promoter of a behaviorally relevant gene such as the OTR. Only ERalpha could induce the OTR gene in two cell lines tested, the CV-1 and the SK-N-BE2C neuroblastoma cell lines. ERbeta was incapable of inducing the gene in either cell line. ERalpha is therefore not equivalent to ERbeta on this physiological promoter. Indeed, in the neural cell line, ERbeta can inhibit ERalpha-mediated induction from the OTR promoter. While the TRalpha1 isoform inhibited ERalpha-mediated induction in the neural cell line, the TRbeta1 isoform stimulated induction, thus demonstrating isoform specificity in the interaction. The use of a DNA-binding mutant, the TR P box mutant, showed that inhibition of ERalpha-mediated induction of the rat OTR gene promoter by the TRalpha1 isoform does not require DNA-binding ability. SRC-1 overexpression relieved TRalpha1-mediated inhibition in both cell lines, suggesting that squelching for coactivators is an important molecular mechanism in TRalpha-mediated inhibition. Such interactions between TR and ER isoforms on the rat OTR promoter provide a mechanism to achieve neuroendocrine integration.
Resumo:
Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.
MOLECULAR MECHANISMS UNDERLYING THE TRANSCRIPTIONAL REGULATION OF T HELPER 17 AND REGULATORY T CELLS
Resumo:
CD4+ T helper (Th) lymphocytes are vital for integrating immune responses by orchestrating the function of other immune cell types. Naïve Th cells can differentiate into different effector subsets that are characterized by their cytokine profile and immune regulatory functions. These subsets include Th1, Th2, Th17, natural and inducible regulatory T cells (nTreg and iTreg respectively), among others. We focused our investigation on two Th lineages, Th17 and regulatory T cells, with opposing functions in the immune system. These subsets have been suggested to be reciprocally regulated since they both require TGF-b for their development. We investigated the role of the Treg-associated master transcription factor Foxp3, and found that Foxp3 inhibits Th17 cell generation by preventing the transcriptional activity of the two main Th17-specific transcription factors, nuclear orphan receptors RORa and RORgt. At the molecular level, we identified two different functional domains in Foxp3 required for such inhibition: the LQALL sequence in exon 2 and the TIP60/HDAC7 binding domain. These domains could be crucial to either prevent the association of the nuclear receptors to coactivators or to recruit histone deacetylases to RORa- or RORgt-target genes. Since TGF-b is a common cytokine required for the commitment towards both Th lineages, we determined the role of the TGF-b-dependent signaling pathway in the generation of each subset. By using mice with deficiencies in signaling molecules downstream of TGF-b, we found that while Smad2, Smad3 and Smad4 are required for the generation of iTreg cells, only Smad2 is indispensable for the induction of IL-17-producing cells, suggesting that TGF-b induces these T helper lineages through differential signaling pathways. Thus, our findings describe novel transcriptional regulatory mechanisms that control the generation of two T helper lineages with opposing functions. These findings could provide novel therapeutic targets to treat diseases where the balance of these T cells is dysregulated, such as in autoimmunity, chronic infectious diseases and cancer.