602 resultados para TRACTS
Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts
Resumo:
Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (−/−) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13−/− mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13−/− mice and depletion of CD4+ T cells did not affect infection in IL-13−/− mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL-13-associated diseases.
Resumo:
Olfactory ensheathing cells, the glial cells of the olfactory nervous system, exhibit unique growth-promoting and migratory properties that make them interesting candidates for cell therapies targeting neuronal injuries such as spinal cord injury. Transplantation of olfactory cells is feasible and safe in humans; however, functional outcomes are highly variable with some studies showing dramatic improvements and some no improvements at all. We propose that the reason for this is that the identity and purity of the cells is different in each individual study. We have shown that olfactory ensheathing cells are not a uniform cell population and that individual subpopulations of OECs are present in different regions of the olfactory nervous system, with strikingly different behaviors. Furthermore, the presence of fibroblasts and other cell types in the transplant can dramatically alter the behavior of the transplanted glial cells. Thus, a thorough characterization of the differences between olfactory ensheathing cell subpopulations and how the behavior of these cells is affected by the presence of other cell types is highly warranted.
Resumo:
This thesis is a morphological study of the settlement patterns of the diverse hill groups in Chittagong Hill Tracts – a mountainous borderland of Bangladesh in South Asia. It examines the settlement morphology of a hill town, using a combination of both quantitative and qualitative methods, and explains the recurrent neighbourhood types of the highland groups in relation to their urbanisation. The research findings related to the settlements of diverse cultural groups in a cross-border region of the Asian uplands are also relevant to similar contexts and enquiries. Furthermore, the developed methodological framework that facilitated the data collection process in CHT's culturally diverse regions is also applicable to the investigation of geographic areas with similar socio-cultural complexities. Finally, this research specifically contributes to the literature of cross-cultural studies of highland towns and vernacular settlements in the Asian context.
Labeling white matter tracts in hardi by fusing multiple tract atlases with applications to genetics
Resumo:
Accurate identification of white matter structures and segmentation of fibers into tracts is important in neuroimaging and has many potential applications. Even so, it is not trivial because whole brain tractography generates hundreds of thousands of streamlines that include many false positive fibers. We developed and tested an automatic tract labeling algorithm to segment anatomically meaningful tracts from diffusion weighted images. Our multi-atlas method incorporates information from multiple hand-labeled fiber tract atlases. In validations, we showed that the method outperformed the standard ROI-based labeling using a deformable, parcellated atlas. Finally, we show a high-throughput application of the method to genetic population studies. We use the sub-voxel diffusion information from fibers in the clustered tracts based on 105-gradient HARDI scans of 86 young normal twins. The whole workflow shows promise for larger population studies in the future.
Resumo:
We introduce a framework for population analysis of white matter tracts based on diffusion-weighted images of the brain. The framework enables extraction of fibers from high angular resolution diffusion images (HARDI); clustering of the fibers based partly on prior knowledge from an atlas; representation of the fiber bundles compactly using a path following points of highest density (maximum density path; MDP); and registration of these paths together using geodesic curve matching to find local correspondences across a population. We demonstrate our method on 4-Tesla HARDI scans from 565 young adults to compute localized statistics across 50 white matter tracts based on fractional anisotropy (FA). Experimental results show increased sensitivity in the determination of genetic influences on principal fiber tracts compared to the tract-based spatial statistics (TBSS) method. Our results show that the MDP representation reveals important parts of the white matter structure and considerably reduces the dimensionality over comparable fiber matching approaches.
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Digital image
Resumo:
The complete genome of the baker's yeast S. cerevisiae was analyzed for the presence of polypurine/polypyrimidine (poly[pu/py]) repeats and their occurrences were classified on the basis of their location within and outside open reading frames (ORFs). The analysis reveals that such sequence motifs are present abundantly both in coding as well as noncoding regions. Clear positional preferences are seen when these tracts occur in noncoding regions. These motifs appear to occur predominantly at a unit nucleosomal length both upstream and downstream of ORFs. Moreover, there is a biased distribution of polypurines in the coding strands when these motifs occur within open reading frames. The significance of the biased distribution is discussed with reference to the occurrence of these motifs in other known mRNA sequences and expressed sequence tags. A model for cis regulation of gene expression is proposed based on the ability of these motifs to form an intermolecular triple helix structure when present within the coding region and/or to modulate nucleosome positioning via enhanced histone affinity when present outside coding regions.
Resumo:
DNA sequences containing a stretch of several A:T basepairs without a 5'-TA-3' step are known as A-tracts and have been the subject of extensive investigation because of their unique structural features such as a narrow minor groove and their crucial role in several biological processes. One of the aspects under investigation has been the influence of the 5-methyl group of thymine on the properties of A-tracts. Detailed molecular dynamics simulation studies of the sequences d(CGCAAAUUUGCG) and d(CGCAAATTTGCG) indicate that the presence of the 5-methyl group in thymine increases the frequency of a narrow minor groove conformation, which could facilitate its specific recognition by proteins, and reduce its susceptibility to cleavage by DNase I. The bias toward a wider minor groove in the absence of the thymine 5-methyl group is a static structural feature. Our results also indicate that the presence of the thymine 5-methyl group is necessary for calibrating the backbone conformation and the basepair and dinucleotide step geometry of the core A-tract as well as the flanking CA/TG and the neighboring GC/GC steps, as observed in free and protein-bound DNA. As a consequence, it also fine-tunes the curvature of the longer DNA fragment in which the A-tract is embedded.