189 resultados para TP53
Resumo:
Background: Ser-249 TP53 mutation (249(Ser)) is a molecular evidence for aflatoxin-related carcinogenesis in Hepatocellular Carcinoma (HCC) and it is frequent in some African and Asian regions, but it is unusual in Western countries. HBV has been claimed to add a synergic effect on genesis of this particular mutation with aflatoxin. The aim of this study was to investigate the frequency of 249Ser mutation in HCC from patients in Brazil. Methods: We studied 74 HCC formalin fixed paraffin blocks samples of patients whom underwent surgical resection in Brazil. 249Ser mutation was analyzed by RFLP and DNA sequencing. HBV DNA presence was determined by Real-Time PCR. Results: 249Ser mutation was found in 21/74 (28%) samples while HBV DNA was detected in 13/74 (16%). 249Ser mutation was detected in 21/74 samples by RFLP assay, of which 14 were confirmed by 249Ser mutant-specific PCR, and 12 by nucleic acid sequencing. All HCC cases with p53-249ser mutation displayed also wild-type p53 sequences. Poorly differentiated HCC was more likely to have 249Ser mutation (OR = 2.415, 95% CI = 1.001 - 5.824, p = 0.05). The mean size of 249Ser HCC tumor was 9.4 cm versus 5.5 cm on wild type HCC (p = 0.012). HBV DNA detection was not related to 249Ser mutation. Conclusion: Our results indicate that 249Ser mutation is a HCC important factor of carcinogenesis in Brazil and it is associated to large and poorly differentiated tumors.
Resumo:
The TP53 tumor suppressor gene codifies a protein responsible for preventing cells with genetic damage from growing and dividing by blocking cell growth or apoptosis pathways. A common single nucleotide polymorphism (SNP) in TP53 codon 72 (Arg72Pro) induces a 15-fold decrease of apoptosis-inducing ability and has been associated with susceptibility to human cancers. Recently, another TP53 SNP at codon 47 (Pro47Ser) was reported to have a low apoptosis-inducing ability; however, there are no association studies between this SNP and cancer. Aiming to study the role of TP53 Pro47Ser and Arg72Pro on glioma susceptibility and oncologic prognosis of patients, we investigated the genotype distribution of these SNPs in 94 gliomas (81 astrocytomas, 8 ependymomas and 5 oligodendrogliomas) and in 100 healthy subjects by the polymerase chain reaction-restriction fragment length polymorphism approach. Chi-square and Fisher exact test comparisons for genotype distributions and allele frequencies did not reveal any significant difference between patients and control groups. Overall and disease-free survivals were calculated by the Kaplan-Meier method, and the log-rank test was used for comparisons, but no significant statistical difference was observed between the two groups. Our data suggest that TP53 Pro47Ser and Arg72Pro SNPs are not involved either in susceptibility to developing gliomas or in patient survival, at least in the Brazilian population.
Resumo:
Disruption or loss of tumor suppressor gene TP53 is implicated in the development or progression of almost all different types of human malignancies. Other members of the p53 family have been identified. One member, p73, not only shares a high degree of similarity with p53 in its primary sequence, but also has similar functions. Like p53, p73 can bind to DNA and activate transcription. Using PCR-SSCP and gene sequencing, we analyzed the TP53 and TP73 genes in a case of a grade III anaplastic astrocytoma that progressed to glioblastoma. We found a deletion of AAG at position 595-597 of TP53 (exon 6), resulting in the deletion of Glu 199 in the protein and a genomic polymorphism of TP73, identified as an A-to-G change, at position E8/+15 at intron 8 (IVS8-15A>G). The mutation found at exon 6 of the gene TP53 could be associated with the rapid tumoral progression found in this case, since the mutated p53 may inactivate the wild-type p53 and the p73 alpha protein, which was conserved here, leading to an increase in cellular instability.
Resumo:
The p53 tumor suppressor gene is the most frequently mutated gene in human cancer; this gene is mutated in up to 50% of human tumors. It has a critical role in the cell cycle, apoptosis and cell senescence, and it participates in many crucial physiological and pathological processes. Polymorphisms of p53 have been suggested to be associated with genetically determined susceptibility in various types of cancer. Another process involved with the development and progression of tumors is DNA hypermethylation. Aberrant methylation of the promoter is an alternative epigenetic change in genetic mechanisms, leading to tumor suppressor gene inactivation. In the present study, we examined the TP53 Arg72Pro and Pro47Ser polymorphisms using PCR-RFLP and the pattern of methylation of the p53 gene by methylation-specific PCR in 90 extra-axial brain tumor samples. Patients who had the allele Pro of the TP53 Arg72Pro polymorphism had an increased risk of tumor development ( odds ratio, OR = 3.23; confidence interval at 95%, 95% CI = 1.71-6.08; P = 0.003), as did the allele Ser of TP53 Pro47Ser polymorphism (OR = 1.28; 95% CI = 0.03-2.10; P = 0.01). Comparison of overall survival of patients did not show significant differences. In the analysis of DNA methylation, we observed that 37.5% of meningiomas, 30% of schwannomas and 52.6% of metastases were hypermethylated, suggesting that methylation is important for tumor progression. We suggest that TP53 Pro47Ser and Arg72Pro polymorphisms and DNA hypermethylation are involved in susceptibility for developing extra-axial brain tumors.
Resumo:
Background: Mutations in TP53 are common events during carcinogenesis. In addition to gene mutations, several reports have focused on TP53 polymorphisms as risk factors for malignant disease. Many studies have highlighted that the status of the TP53 codon 72 polymorphism could influence cancer susceptibility. However, the results have been inconsistent and various methodological features can contribute to departures from Hardy-Weinberg equilibrium, a condition that may influence the disease risk estimates. The most widely accepted method of detecting genotyping error is to confirm genotypes by sequencing and/or via a separate method. Results: We developed two new genotyping methods for TP53 codon 72 polymorphism detection: Denaturing High Performance Liquid Chromatography (DHPLC) and Dot Blot hybridization. These methods were compared with Restriction Fragment Length Polymorphism (RFLP) using two different restriction enzymes. We observed high agreement among all methodologies assayed. Dot-blot hybridization and DHPLC results were more highly concordant with each other than when either of these methods was compared with RFLP. Conclusions: Although variations may occur, our results indicate that DHPLC and Dot Blot hybridization can be used as reliable screening methods for TP53 codon 72 polymorphism detection, especially in molecular epidemiologic studies, where high throughput methodologies are required.
Resumo:
Arg72Pro is a common polymorphism in TP53, showing differences in its biological functions. Case-control studies have been performed to elucidate the role of Arg72Pro in cancer, although the results are conflicting and heterogeneous. Here, we analyzed pooled data from case-control studies to determine the role of Arg72Pro in different cancer sites. We performed a systematic review and meta-analysis of 302 case-control studies that analyzed Arg72Pro in cancer susceptibility. Odds ratios were estimated for different tumor sites using distinct genetic models, and the heterogeneity between studies was explored using I(2) values and meta-regression. We adopted quality criteria to classify the studies. Subgroup analyses were done for tumor sites according to ethnicity, histological, and anatomical sites. Results indicated that Arg72Pro is associated with higher susceptibility to cancer in some tumor sites, mainly hepatocarcinoma. For some tumor sites, quality of studies was associated with the size of genetic association, mainly in cervical, head and neck, gastric, and lung cancer. However, study quality did not explain the observed heterogeneity substantially. Meta-regression showed that ethnicity, allelic frequency and genotyping method were responsible for a substantial part of the heterogeneity observed. Our results suggest ethnicity and histological and anatomical sites may modulate the penetrance of Arg72Pro in cancer susceptibility. This meta-analysis denotes the importance for more studies with good quality and that the covariates responsible for heterogeneity should be controlled to obtain a more conclusive response about the function of Arg72Pro in cancer.
Resumo:
Cancers of the upper aerodigestive tract [(UADT): oral cavity, pharynx, larynx and oesophagus] have high incidence rates in some parts of South America. Alterations in the TP53 gene are common in these cancers. In our study, we have estimated the prevalence and patterns of TP53 mutations (exons 4-10) in 236 UADT tumours from South America in relation to lifestyle risk factors, such as tobacco smoking and alcohol drinking. Moreover, we have conducted a pilot study of EGFR mutations (exons 18-21) in 45 tumours from the same population. TP53 mutation prevalence was high: 59% of tumours were found to carry mutant TP53. We found an association between TP53 mutations and tobacco smoking and alcohol drinking. The mutation rate increased from 38% in never-smokers to 66% in current smokers (P-value for trend = 0.09). G:C > T:A transversions were found only in smokers (15%). Alcohol drinkers carried more G:C > A:T transitions (P = 0.08). Non-exposed individuals were more probable to carry G:C > A:T transitions at CpG sites (P = 0.01 for never-smokers and P < 0.001 for never-drinkers). EGFR mutations were found in 4% of cases. Inactivation of TP53 by mutations is a crucial molecular event in the UADT carcinogenesis and it is closely related to exposure to lifestyle risk factors. EGFR mutations do not appear to be a common event in UADT carcinogenesis in this population.
Resumo:
TP73 encodes for two proteins: full-length TAp73 and Delta Np73, which have little transcriptional activity and exert dominant-negative function towards TP53 and TAp73. We compared TATP73 and Delta NTP73 expression in acute myeloid leukaemia (AML) samples and normal CD34(+) progenitors. Both forms were more highly expressed in leukaemic cells. Amongst AML blasts, TATP73 was more expressed in AML harbouring the recurrent genetic abnormalities (RGA): PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11, whereas higher Delta NTP73 expression was detected in non-RGA cases. TP53 expression did not vary according to Delta NTP73/TATP73 expression ratio. Leukaemic cells with higher Delta NTP73/TATP73 ratios were significantly more resistant to cytarabine-induced apoptosis.
Resumo:
Myelodysplastic syndrome (MDS) is a rare hematological malignancy in children. It was performed FISH analysis in 19 pediatric MDS patients to investigate deletions involving the PPAR gamma and TP53 genes. Significant losses in the PPAR gamma gene and deletions in the tumor suppressor gene TP53 were observed in 17 and 18 cases, respectively. Using quantitative RT-PCR, it was detected PPAR gamma transcript downexpression in a subset of these cases. G-banding analysis revealed 17p deletions in a small number of these cases. One MDS therapy-related patient had neither a loss of PPAR gamma nor TP53. These data suggest that the PPAR gamma and TP53 genes may be candidates for molecular markers in pediatric MDS, and that these potentially recurrent deletions could contribute to the identification of therapeutic approaches in primary pediatric MDS. (C) 2008 Elsevier Ltd. All fights reserved.
Resumo:
Urinary bladder cancer is the fourth most common malignancy in the Western world. Transitional cell carcinoma (TCC) is the most common subtype, accounting for about 90% of all bladder cancers. The TP53 gene plays an essential role in the regulation of the cell cycle and apoptosis and therefore contributes to cellular transformation and malignancy; however, little is known about the differential gene expression patterns in human tumors that present with the wild-type or mutated TP53 gene. Therefore, because gene profiling can provide new insights into the molecular biology of bladder cancer, the present study aimed to compare the molecular profiles of bladder cancer cell lines with different TP53 alleles, including the wild type (RT4) and two mutants (5637, with mutations in codons 280 and 72; and T24, a TP53 allele encoding an in-frame deletion of tyrosine 126). Unsupervised hierarchical clustering and gene networks were constructed based on data generated by cDNA microarrays using mRNA from the three cell lines. Differentially expressed genes related to the cell cycle, cell division, cell death, and cell proliferation were observed in the three cell lines. However, the cDNA microarray data did not cluster cell lines based on their TP53 allele. The gene profiles of the RT4 cells were more similar to those of T24 than to those of the 5637 cells. While the deregulation of both the cell cycle and the apoptotic pathways was particularly related to TCC, these alterations were not associated with the TP53 status.
Resumo:
Currently, the combination of cisplatin and gemcitabine is considered a standard chemotherapeutic protocol for bladder cancer. However, the mechanism by which these drugs act on tumor cells is not completely understood. The aim of the present study was to investigate the effects of these two antineoplastic drugs on the apoptotic index and cell cycle kinetics of urinary bladder transitional carcinoma cell lines with wild-type or mutant TP53 (RT4: wild type for TP53; 5637 and T24: mutated TP53). Cytotoxicity, cell survival assays, clonogenic survival assays and flow cytometric analyses for cell cycle kinetics and apoptosis detection were performed with three cell lines treated with different concentrations of cisplatin and gemcitabine. G(1) cell cycle arrest was observed in the three cell lines after treatment with gemcitabine and gemcitabine plus cisplatin. A significant increase in cell death was also detected in all cell lines treated with cisplatin or gemcitabine. Lower survival rates occurred with the combined drug protocol independent of TP53 status. TP53-wild type cells (RT4) were more sensitive to apoptosis than were mutated TP53 cells when treated with cisplatin or gemcitabine. Concurrent treatment with cisplatin and gemcitabine was more effective on transitional carcinoma cell lines than either drug alone; the drug combination led to a decreased cell survival that was independent of TP53 status. Therefore, the synergy between low concentrations of cisplatin and gemcitabine may have clinical relevance, as high concentrations of each individual drug are toxic to whole organisms.
Resumo:
Rare germline mutations in TP53 (17p13.1) cause a highly penetrant predisposition to a specific spectrum of early cancers, defining the Li-Fraumeni Syndrome (LFS). A germline mutation at codon 337 (p.Arg337His, c1010G>A) is found in about 0.3% of the population of Southern Brazil. This mutation is associated with partially penetrant LFS traits and is found in the germline of patients with early cancers of the LFS spectrum unselected for familial his- tory. To characterize the extended haplotypes carrying the mutation, we have genotyped 9 short tandem repeats on chromosome 17p in 12 trios of Brazilian p.Arg337His carriers. Results confirm that all share a common ancestor haplotype of Caucasian/Portuguese-Ibe- ric origin, distant in about 72–84 generations (2000 years assuming a 25 years intergenera- tional distance) and thus pre-dating European migration to Brazil. So far, the founder p. Arg337His haplotype has not been detected outside Brazil, with the exception of two resi- dents of Portugal, one of them of Brazilian origin. On the other hand, increased meiotic recombination in p.Arg337His carriers may account for higher than expected haplotype diversity. Further studies comparing haplotypes in populations of Brazil and of other areas of Portuguese migration are needed to understand the historical context of this mutation in Brazil.
Resumo:
The present study investigated promoter hypermethylation of TP53 regulatory pathways providing a potential link between epigenetic changes and mitochondrial DNA (mtDNA) alterations in breast cancer patients lacking a TP53 mutation. The possibility of using the cancer-specific alterations in serum samples as a blood-based test was also explored. Triple-matched samples (cancerous tissues, matched adjacent normal tissues and serum samples) from breast cancer patients were screened for TP53 mutations, and the promoter methylation profile of P14(ARF), MDM2, TP53 and PTEN genes was analyzed as well as mtDNA alterations, including D-loop mutations and mtDNA content. In the studied cohort, no mutation was found in TP53 (DNA-binding domain). Comparison of P14(ARF) and PTEN methylation patterns showed significant hypermethylation levels in tumor tissues (P < 0.05 and <0.01, respectively) whereas the TP53 tumor suppressor gene was not hypermethylated (P < 0.511). The proportion of PTEN methylation was significantly higher in serum than in the normal tissues and it has a significant correlation to tumor tissues (P < 0.05). mtDNA analysis revealed 36.36% somatic and 90.91% germline mutations in the D-loop region and also significant mtDNA depletion in tumor tissues (P < 0.01). In addition, the mtDNA content in matched serum was significantly lower than in the normal tissues (P < 0.05). These data can provide an insight into the management of a therapeutic approach based on the reversal of epigenetic silencing of the crucial genes involved in regulatory pathways of the tumor suppressor TP53. Additionally, release of significant aberrant methylated PTEN in matched serum samples might represent a promising biomarker for breast cancer.
Resumo:
We report a 26-year-old female patient who was diagnosed within 4 years with chest sarcoma, lung adenocarcinoma, and breast cancer. While her family history was unremarkable, DNA sequencing of TP53 revealed a germline de novo non-sense mutation in exon 6 p.Arg213X. One year later, she further developed a contralateral ductal carcinoma in situ, and 18 months later a jaw osteosarcoma. This case illustrates the therapeutic pitfalls in the care of a young cancer patient with TP53 de novo germline mutations and the complications related to her first-line therapy. Suggestion is made to use the less stringent Chompret criteria for germline TP53 mutation screening. Our observation underlines the possibly negative effect of radiotherapy in generating second tumors in patients with a TP53 mutation. We also present a review of six previously reported cases, comparing their cancer phenotypes with those generally produced by TP53 mutations.
Resumo:
BACKGROUND The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors in not fully known. The aim of our study was to analyse mutations in TP53, CDKN1A, CDKN2A, and CDKN2B genes in melanoma tumors and melanoma cell lines METHODS We analysed 39 primary and metastatic melanomas and 9 melanoma cell lines by single-stranded conformational polymorphism (SSCP). RESULTS The single-stranded technique showed heterozygous defects in the TP53 gene in 8 of 39 (20.5%) melanoma tumors: three new single point mutations in intronic sequences (introns 1 and 2) and exon 10, and three new single nucleotide polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the CDKN2A exon 1 one of which was novel (stop codon, and missense mutation). No defects were found in the remaining genes. CONCLUSION These results suggest that these genes are involved in melanoma tumorigenesis, although they may be not the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas should be studied.