194 resultados para TORUS HOMEOMORPHISMS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that if f is a homeomorphism of the 2-torus isotopic to the identity and its lift (f) over tilde is transitive, or even if it is transitive outside the lift of the elliptic islands, then (0,0) is in the interior of the rotation set of (f) over tilde. This proves a particular case of Boyland's conjecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a homotopy equivalence between compact, connected, oriented surfaces with non-empty boundary is homotopic to a homeomorphism if and only if it commutes with the Goldman bracket. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analytically evaluate the Renyi entropies for the two dimensional free boson CFT. The CFT is considered to be compactified on a circle and at finite temperature. The Renyi entropies S-n are evaluated for a single interval using the two point function of bosonic twist fields on a torus. For the case of the compact boson, the sum over the classical saddle points results in the Riemann-Siegel theta function associated with the A(n-1) lattice. We then study the Renyi entropies in the decompactification regime. We show that in the limit when the size of the interval becomes the size of the spatial circle, the entanglement entropy reduces to the thermal entropy of free bosons on a circle. We then set up a systematic high temperature expansion of the Renyi entropies and evaluate the finite size corrections for free bosons. Finally we compare these finite size corrections both for the free boson CFT and the free fermion CFT with the one-loop corrections obtained from bulk three dimensional handlebody spacetimes which have higher genus Riemann surfaces as its boundary. One-loop corrections in these geometries are entirely determined by quantum numbers of the excitations present in the bulk. This implies that the leading finite size corrections contributions from one-loop determinants of the Chern-Simons gauge field and the Dirac field in the dual geometry should reproduce that of the free boson and the free fermion CFT respectively. By evaluating these corrections both in the bulk and in the CFT explicitly we show that this expectation is indeed true.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential mu, the deformation is related at high temperatures to a higher spin black hole in hs0] theory on AdS(3) spacetime. We calculate the order mu(2) corrections to the single interval Renyi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order mu(2) corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Renyi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Renyi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several examples of horizontal ringlike prominences in the observations of Ha monochromatic image of the sun. In the present paper the statie equilibrium of the plasma loop is discussed. The analytic solutions to magnetic field and density are obtained for the axisymmetrie case under the closed boundary condition. Results show the great influence of the gravity and different force-free factors on the configurations of magnetic surfaces and the distributions of thermodynamical quantities for the prominence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A group G → Homeo_+(S^1) is a Möbius-like group if every element of G is conjugate in Homeo(S^1) to a Mobius transformation. Our main result is: given a Mobus like like group G which has at least one global fixed point, G is conjugate in Homeo(S^1) to a Möbius group if and only if the limit set of G is all of S^1 . Moreover, we prove that if the limit set of G is not SI, then after identifying some closed subintervals of S^1 to points, the induced action of G is conjugate to an action of a Möbius group.

We also show that the above result does not hold in the case when G has no global fixed points. Namely, we construct examples of Möbius-like groups with limit set equal to S^1, but these groups cannot be conjugated to Möbius groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the behavior of a network of N agents, each evolving on the circle. We propose a novel algorithm that achieves synchronization or balancing in phase models under mild connectedness assumptions on the (possibly time-varying and unidirectional) communication graphs. The global convergence analysis on the N-torus is a distinctive feature of the present work with respect to previous results that have focused on convergence in the Euclidean space. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are finitely many GIT quotients of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of electron capture and ionization of O-2 molecules in collisions with H+ and O+ ions have been made over an energy range 10 - 100 keV. Cross sections for dissociative and nondissociative interactions have been separately determined using coincidence techniques. Nondissociative channels leading to O-2(+) product formation are shown to be dominant for both the H+ and the O+ projectiles in the capture collisions and only for the H+ projectiles in the ionization collisions. Dissociative channels are dominant for ionizing collisions involving O+ projectiles. The energy distributions of the O+ fragment products from collisions involving H+ and O+ have also been measured for the first time using time-of-flight methods, and the results are compared with those from other related studies. These measurements have been used to describe the interaction of the energetic ions trapped in Jupiter's magnetosphere with the very thin oxygen atmosphere of the icy satellite Europa. It is shown that the ionization of oxygen molecules is dominated by charge exchange plus ion impact ionization processes rather than photoionization. In addition, dissociation is predominately induced through excitation of electrons into high-lying repulsive energy states ( electronically) rather than arising from momentum transfer from knock-on collisions between colliding nuclei, which are the only processes included in current models. Future modeling will need to include both these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we investigate some problems in set theoretical topology related to the concepts of the group of homeomorphisms and order. Many problems considered are directly or indirectly related to the concept of the group of homeomorphisms of a topological space onto itself. Order theoretic methods are used extensively. Chapter-l deals with the group of homeomorphisms. This concept has been investigated by several authors for many years from different angles. It was observed that nonhomeomorphic topological spaces can have isomorphic groups of homeomorphisms. Many problems relating the topological properties of a space and the algebraic properties of its group of homeomorphisms were investigated. The group of isomorphisms of several algebraic, geometric, order theoretic and topological structures had also been investigated. A related concept of the semigroup of continuous functions of a topological space also received attention

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized honeycomb torus is a candidate for interconnection network architectures, which includes honeycomb torus, honeycomb rectangular torus, and honeycomb parallelogramic torus as special cases. Existence of Hamiltonian cycle is a basic requirement for interconnection networks since it helps map a "token ring" parallel algorithm onto the associated network in an efficient way. Cho and Hsu [Inform. Process. Lett. 86 (4) (2003) 185-190] speculated that every generalized honeycomb torus is Hamiltonian. In this paper, we have proved this conjecture. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of the diameter of an interconnection network is essential in evaluating the performance of the network. Parallelogramic honeycomb torus is an attractive alternative to classical torus network due to smaller vertex degree, and hence, lower implementation cost. In this paper, we present the expression for the diameter of a parallelogramic, honeycomb torus, which extends a known result about rhombic: honeycomb torus. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the linear and nonlinear stability of stationary solutions of the forced two-dimensional Navier-Stokes equations on the domain [0,2π]x[0,2π/α], where α ϵ(0,1], with doubly periodic boundary conditions. For the linear problem we employ the classical energy{enstrophy argument to derive some fundamental properties of unstable eigenmodes. From this it is shown that forces of pure χ2-modes having wavelengths greater than 2π do not give rise to linear instability of the corresponding primary stationary solutions. For the nonlinear problem, we prove the equivalence of nonlinear stability with respect to the energy and enstrophy norms. This equivalence is then applied to derive optimal conditions for nonlinear stability, including both the high-and low-Reynolds-number limits.