922 resultados para TORSION ANGLE
Resumo:
Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.
Resumo:
In the title compound, C17H15NO4, the conformation about the C=C double bond [1.348 (2) Å] is E with the ketone group almost co-planar [C-C-C-C torsion angle = 7.2 (2)°] but the phenyl group twisted away [C-C-C-C = 160.93 (17)°]. The terminal aromatic rings are almost perpendicular to each other [dihedral angle = 81.61 (9)°] giving the mol-ecule an overall U-shape. The crystal packing feature benzene-C-H⋯O(ketone) contacts that lead to supra-molecular helical chains along the b axis. These are connected by π-π inter-actions between benzene and phenyl rings [inter-centroid distance = 3.6648 (14) Å], resulting in the formation of a supra-molecular layer in the bc plane.
Resumo:
In the title compound, C17H14N2O6, the conformation about the C=C double bond [1.345 (2) Å] is E, with the ketone moiety almost coplanar [C-C-C-C torsion angle = 9.5 (2)°] along with the phenyl ring [C-C-C-C = 5.9 (2)°]. The aromatic rings are almost perpendicular to each other [dihedral angle = 86.66 (7)°]. The 4-nitro moiety is approximately coplanar with the benzene ring to which it is attached [O-N-C-C = 4.2 (2)°], whereas the one in the ortho position is twisted [O-N-C-C = 138.28 (13)°]. The mol-ecules associate via C-H⋯O inter-actions, involving both O atoms from the 2-nitro group, to form a helical supra-molecular chain along [010]. Nitro-nitro N⋯O inter-actions [2.8461 (19) Å] connect the chains into layers that stack along [001].
Resumo:
In the title molecule, C(11)H(14)BrNO, there is twist between the mean plane of the amide group and the benzene ring [C(=O)-N-C...;C torsion angle = -31.2 (5)degrees]. In the crystal, intermolecular N-H...O and weak C-H...O hydrogen bonds link molecules into chains along [100]. The methyl group H atoms are disordered over two sets of sites with equal occupancy.
Resumo:
The title compound, C(10)H(11)BrN(2)O(3), exhibits a small twist between the amide residue and benzene ring [the C-N-C-C torsion angle = 12.7 (4)degrees]. The crystal structure is stabilized by weak N-H center dot center dot center dot O, C-H center dot center dot center dot Br and C-H center dot center dot center dot O interactions. These lead to supramolecular layers in the bc plane.
Resumo:
The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D H-1 NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and mu O-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18 +/- 0.05 Angstrom for the backbone atoms and 1.39 +/- 0.33 Angstrom for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.
Resumo:
Much interest has been generated by recent reports on the discovery of circular (i.e. head-to-tail cyclized) proteins in plants. Here we report the three-dimensional structure of one of the newest such circular proteins, MCoTI-II, a novel trypsin inhibitor from Momordica cochinchinensis, a member of the Cucurbitaceae plant family. The structure consists of a small beta -sheet, several turns, and a cystine knot arrangement of the three disulfide bonds. Interestingly, the molecular topology is similar to that of the plant cyclotides (Craik, D. J., Daly, N. L., Bond, T., and Waine, C. (1999) J. Mol. Biol, 294, 1327-1336), which derive from the Rubiaceae and Violaceae plant families, have antimicrobial activities, and exemplify the cyclic cystine knot structural motif as part of their circular backbone. The sequence, biological activity, and plant family of MCoTI-II are all different from known cyclotides. However, given the structural similarity, cyclic backbone, and plant origin of MCoTI-II, we propose that MCoTI-II can be classified as a new member of the cyclotide class of proteins. The expansion of the cyclotides to include trypsin inhibitory activity and a new plant family highlights the importance and functional variability of circular proteins and the fact that they are more common than has previously been believed, Insights into the possible roles of backbone cyclization have been gained by a comparison of the structure of MCoTI-II with the homologous acyclic trypsin inhibitors CMTI-I and EETI-II from the Cucurbitaceae plant family.
Resumo:
The three-dimensional solution structure of BSTI, a trypsin inhibitor from the European frog Bombina bombina, has been solved using H-1 NMR spectroscopy. The 60 amino acid protein contains five disulfide bonds, which were unambiguously determined to be Cvs (4-38), Cys (13-34), Cys (17-30), Cys (21-60), and Cys (40-54) by experimental restraints and subsequent structure calculations. The main elements of secondary structure are four beta -strands, arranged as two small antiparallel beta -sheets, The overall fold of BSTI is disk shaped and is characterized by the lack of a hydrophobic core. The presumed active site is located on a loop comprising residues 21-34, which is a relatively disordered region similar to that seen in many other protease inhibitors. However, the overall fold is different to other known protease inhibitors with the exception of a small family of inhibitors isolated from nematodes of the family Ascaris and recently also from the haemolymph of Apis mellifera. BSTI may thus be classified as a new member of this recently discovered family of protease inhibitors.
Resumo:
Using the B3LYP/6-31G* ab initio method, we have studied the rotation about the C=C bonds in 15 push-pull ethylenes of the general formula (X,Y)C=C(CHO)(2) [X, Y = NH2, NHCH3, N(CH3)(2), OCH3, SCH3] in the gas phase. Two stationary points (minimum and transition state) were located for all compounds. The geometry, dipole moments, natural bond orbital atomic charges, as well as the rotational barriers were examined. The torsion angle 0 depends essentially on the presence or absence of intramolecular hydrogen bonds, and the barrier is a function of the torsion angle. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The primary sequence and three-dimensional structure of a novel peptide toxin isolated from the Australian funnel-web spider Hadronyche infensa sp. is reported. ACTX-HI:OB4219 contains 38 amino acids, including eight-cysteine residues that form four disulfide bonds. The connectivities of these disulfide bonds were previously unknown but have been unambiguously determined in this study. Three of these disulfide bonds are arranged in an inhibitor cystine-knot (ICK) motif, which is observed in a range of other disulfide-rich peptide toxins. The motif incorporates an embedded ring in the structure formed by two of the disulfides and their connecting backbone segments penetrated by a third disulfide bond. Using NMR spectroscopy, we determined that despite the isolation of a single native homologous product by RP-HPLC, ACTX-HI:OB4219 possesses two equally populated conformers in solution. These two conformers were determined to arise from cis/trans isomerization of the bond preceding Pro30. Full assignment of the NMR spectra for both conformers allowed for the calculation of their structures, revealing, the presence of a triple-stranded antiparallel sheet consistent with the inhibitor cystine-knot (ICK) motif.
Resumo:
Cette thèse décrit deux thèmes principaux: 1) la conception, la synthèse, et l'évaluation biophysique des nucléosides tricycliques, et 2) la synthèse de nagilactone B, un produit naturel norditerpenoïde dilactone de la famille de produits naturels “podolactone”. Le premier chapitre décrit la stratégie de design rationnel des nucléosides nommé “restriction conformationnelle double” basée sur les études de modélisation structurales des duplex ADN–ARN modifiés. Cette stratégie implique un blocage du cycle furanose dans une configuration de type N- ou S, et une restriction de la rotation torsionelle autour de l’angle γ. La première contrainte a été incorporée avec un pont méthylène entre l’oxygène en position 2′ et le carbone 4′ du nucléoside. Cette stratégie a été inspirée par les acides nucléiques bloqués (ou “locked nucleic acid”, LNA). La deuxième contrainte a été réalisée en ajoutant un carbocycle supplémentaire dans l'échafaud de l’acide nucléique bloqué. Les défis synthétiques de la formation des nucléotides modifiés à partir des carbohydrates sont décrits ainsi que les améliorations aux stabilités thermiques qu’ils apportent aux duplex oligonucléïques dont ils font partie. Chapitres deux et trois décrivent le développement de deux voies synthétiques complémentaires pour la formation du noyau de nagilactone B. Ce produit naturel a des implications pour le syndrome de Hutchinson–Gilford, à cause de son habilité de jouer le rôle de modulateur de l’épissage d’ARN pré-messager de lamine A. Ce produit naturel contient sept stereocentres différents, dont deux quaternaires et deux comprenant un syn-1,2-diol, ainsi que des lactones à cinq ou six membres, où le cycle à six ressemble à un groupement α-pyrone. La synthèse a débuté avec la cétone de Wieland-Miescher qui a permis d’adresser les défis structurels ainsi qu’explorer les fonctionnalisations des cycles A, B et D du noyau de nagilactone B.
Resumo:
This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.