114 resultados para TORI
Resumo:
In this paper are given examples of tori T² embedded in S³ with all their asymptotic lines dense.
Resumo:
We show that commutative group spherical codes in R(n), as introduced by D. Slepian, are directly related to flat tori and quotients of lattices. As consequence of this view, we derive new results on the geometry of these codes and an upper bound for their cardinality in terms of minimum distance and the maximum center density of lattices and general spherical packings in the half dimension of the code. This bound is tight in the sense it can be arbitrarily approached in any dimension. Examples of this approach and a comparison of this bound with Union and Rankin bounds for general spherical codes is also presented.
Resumo:
In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functional equation satisfied by the invariant tori by using a Newton method. Using some geometric identities, it is possible to perform a Newton step using little storage and few operations. In this paper we focus on the numerical issues of the algorithms (speed, storage and stability) and we refer to the mentioned papers for the rigorous results. We show how to compute efficiently both maximal invariant tori and whiskered tori, together with the associated invariant stable and unstable manifolds of whiskered tori. Moreover, we present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori. Since quasi-periodic cocycles appear in other contexts, this section may be of independent interest. The numerical methods presented here allow to compute in a unified way primary and secondary invariant KAM tori. Secondary tori are invariant tori which can be contracted to a periodic orbit. We present some preliminary results that ensure that the methods are indeed implementable and fast. We postpone to a future paper optimized implementations and results on the breakdown of invariant tori.
Resumo:
In this article, we consider solutions starting close to some linearly stable invariant tori in an analytic Hamiltonian system and we prove results of stability for a super-exponentially long interval of time, under generic conditions. The proof combines classical Birkhoff normal forms and a new method to obtain generic Nekhoroshev estimates developed by the author and L. Niederman in another paper. We will mainly focus on the neighbourhood of elliptic fixed points, the other cases being completely similar.
Resumo:
[Traditions. Asie. Inde. Madhya Pradesh. Damoh]
Resumo:
In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.
Resumo:
We prove the existence and local uniqueness of invariant tori on the verge of breakdown for two systems: the quasi-periodically driven logistic map and the quasi-periodically forced standard map. These systems exemplify two scenarios: the Heagy-Hammel route for the creation of strange non- chaotic attractors and the nonsmooth bifurcation of saddle invariant tori. Our proofs are computer- assisted and are based on a tailored version of the Newton-Kantorovich theorem. The proofs cannot be performed using classical perturbation theory because the two scenarios are very far from the perturbative regime, and fundamental hypotheses such as reducibility or hyperbolicity either do not hold or are very close to failing. Our proofs are based on a reliable computation of the invariant tori and a careful study of their dynamical properties, leading to the rigorous validation of the numerical results with our novel computational techniques.
Resumo:
We present an algorithm for the computation of reducible invariant tori of discrete dynamical systems that is suitable for tori of dimensions larger than 1. It is based on a quadratically convergent scheme that approximates, at the same time, the Fourier series of the torus, its Floquet transformation, and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around the torus and, hence, its linear stability. The algorithm presents a high degree of parallelism, and the computational effort grows linearly with the number of Fourier modes needed to represent the solution. For these reasons it is a very good option to compute quasi-periodic solutions with several basic frequencies. The paper includes some examples (flows) to show the efficiency of the method in a parallel computer. In these flows we compute invariant tori of dimensions up to 5, by taking suitable sections.
Resumo:
Ihmisjoukon puheensorinaa torilla. Lapsia. Autoja.
Resumo:
A Hamiltonian system perturbed by two waves with particular wave numbers can present robust tori, which are barriers created by the vanishing of the perturbed Hamiltonian at some defined positions. When robust tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. Our results indicate that the considered particular solution for the two waves Hamiltonian model shows plenty of robust tori blocking radial transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The non-twist standard map occurs frequently in many fields of science specially in modelling the dynamics of the magnetic field lines in tokamaks. Robust tori, dynamical barriers that impede the radial transport among different regions of the phase space, are introduced in the non-twist standard map in a conservative fashion. The resulting non-twist standard map with robust tori is an improved model to study transport barriers in plasmas confined in tokamaks.
Resumo:
We consider an integrable Hamiltonian system generated by the resonant normal form in order to study a particular mechanism of tunneling. We isolated near doublets of energy corresponding to rotation tori of the classical dynamics counterpart and the degeneracies breakdown is attributed to rotation-rotation tunneling. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper are given examples of tori T(2) embedded in R(3) with all their principal lines dense. These examples are obtained by stereographic projection of deformations of the Clifford torus in S(3). (C) 2008 Elsevier Masson SAS. All rights reserved.