481 resultados para TOLUENE DIISOCYANATE
Resumo:
The toluene diisocyanate based optically active chiral polyurethanes were synthesized according to the symmetry conditions. The noncentrosymmetric (both charge asymmetry and spatial asymmetry) environment were attained by the incorporation of the chiral units (diethyl-(2R,3R)(þ)-tartrate) and donor-acceptor building blocks in the main chain which induce a helical conformation in the macromolecular chain. A series of optically active polyurethanes containing chiral linkages in the polymer back bone have been synthesized by using DBTDL catalyst by incorporating the amido diols which were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane, and diaminohexane respectively. The effect of incorporation of the chiral molecule diethyl-(2R,3R)(þ)-tartrate on the properties of polyurethanes was studied by changing the chromophores and also by varying the chiral-chromophore composition. Various properties of polyurethanes were investigated by UV, Fluorescence, TG/DTA, XRD, polarimetric techniques, Kurtz-Perry powder techniques, etc.
Resumo:
A new class of chiral polyurethanes containing amido linkages in the polymer backbone have been synthesized by reacting toluene diisocyanate with isosorbide (IS) chiral moiety and the chromophores [N,N0-ethane- 1,2-diyl bis(6-hydroxy hexanamide), N,N0-butane-1,4-diyl bis(6-hydroxy hexanamide) and N,N0-hexane-1,6-diyl bis (6-hydroxy hexanamide)]. The corresponding chromophores were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane and diaminohexane, respectively. All the polymers were synthesized according to the symmetry conditions so as to obtain the non-centrosymmetric environment. A series of polyurethanes were synthesized by varying the chiral– chromophore composition. The polyurethanes developed were characterized by optical and thermal methods.
Resumo:
Unsaturated polyester resins (UPRs) are extensively used by the fiber-reinforced plastic (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, UPRs were chemically modified by reactive blending with polyurethane prepolymers having terminal isocyanate groups. Hybrid networks were formed by copolymerisation of unsaturated polyesters with styrene and simultaneous reaction between terminal hydroxyl groups of unsaturated polyester and isocyanate groups of polyurethane prepolymer. The prepolymers were based on toluene diisocyanate (TDI) and each of hydroxy-terminated natural rubber (HTNR), hydroxy- terminated polybutadiene (HTPB), polyethylene glycol (PEG), and castor oil. Properties like tensile strength, toughness, impact resistance, and elongation-at-break of the modified UPRs show considerable improvement by this modification. The thermal stability of the copolymer is also marginally better
Resumo:
Foams are cellular structures, produced by gas bubbles formed during the polyurethane polymerization mixture. Flexible PU foams meet the following two criteria: have a limited resistance to an applied load, being both permeable to air and reversibly deformable. There are two main types of flexible foams, hot and cold cure foams differing in composition and processing temperatures. The hot cure foams are widely applied and represent the main composition of actual foams, while cold cure foams present several processing and property advantages, e.g, faster demoulding time, better humid aging properties and more versatility, as hardness variation with index changes are greater than with hot cure foams. The processing of cold cure foams also is attractive due to the low energy consumption (mould temperature from 30 degrees to 65 degrees C) comparatively to hot cure foams (mould temperature from 30 degrees to 250 degrees C). Another advantage is the high variety of soft materials for low temperature processing moulds. Cold cure foams are diphenylmethane diisocyanate (MDI) based while hot cure foams are toluene diisocyanate (TDI) based. This study is concerned with Viscoelastic flexible foams MDI based for medical applications. Differential Scanning Calorimetry (DSC) was used to characterize the cure kinetics and Dynamical Mechanical Analisys to collect mechanical data. The data obtained from these two experimental procedures were analyzed and associated to establish processing/properties/operation conditions relationships. These maps for the selection of optimized processing/properties/operation conditions are important to achieve better final part properties at lower costs and lead times.
Resumo:
This study describes the preparation and characterization of new starch cross-linked polyurethanes produced by the reaction of native cornstarch with a propylene oxide toluene diisocyanate oligomer. Infrared analysis confirmed the occurrence of the reaction and solubility and swelling tests showed that it had led to cross-linked structures. These products were totally amorphous and displayed elastomeric properties associated with two T(g)s at -60 and 35 degrees C. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Within this thesis, new approaches for the concepts of peptide-polymer conjugates and peptide-based hybrid nanomaterials are investigated. In the first part, the synthesis of a triblock polymer-peptide-polymer is carried out following a typical peptide coupling reaction, both in solution and on solid-phase. The peptide sequence is chosen, so that it is cleaved by an enzyme preparation of trypsin. End-functionalized polystyrene is used as a model hydrophobic polymer and coupled to the peptide sequence. The results show successful coupling reactions in both methods, while the solid phase method produced a more defined product. Suspensions, consisting of peptide-polymer conjugates particles, are prepared in water by ultrasonication. In contact with the enzyme, the peptide constituting the conjugated particles is cleaved. This demonstrates the enzymatic cleavage in heterophase of enzymatic sequence bond to hydrophobic polymers, and is of great interest for the encapsulation and delivery of hydrophobic molecules.rnA second approach is the preparation of peptide-based hybrid nanocapsules. This is achieved by interfacial polyaddition in inverse miniemulsion with the peptide sequence functionalized with additional amino acids. A method suitable to the use of a peptide sequence for interfacial polyaddition was developed. It is shown that, the polarity of the dispersed phase influences the structures prepared, from particle-like to polymeric shell with a liquid core.rnThe peptide sequence is equipped with a FRET pair (more exactly, an internally-quenched fluorescent system) which allows the real-time monitoring of the enzymatic cleavage of the recognition site. This system shows the successful cleavage of the peptide-based nanocapsules when trypsin preparation is added to the suspensions. A water-soluble fluorescent polymer is efficiently entrapped and its possible use as marker for the capsules is highlighted. Furthermore, a small water-soluble fluorescent dye (SR-101) is successfully encapsulated and the encapsulation efficiency as a function of the functionality of the peptide and the amount of comonomer equivalent (toluene diisocyanate) is studied. The dye is encapsulated at such a high concentration, that self-quenching occurs. Thus, the release of the encapsulated dye triggered by the enzymatic cleavage of the peptide results in a fluorescence recovery of the dye. The fluorescence recovery of the FRET pair in the peptide and of the encapsulated dye correlate well.rnFinally, nanocapsules based on a hepsin-cleavable peptide sequence are prepared. Hepsin is an enzyme, which is highly upregulated in prostate cancer cells. The cleavage of the nanocapsules is investigated with healthy and “cancerous” (hepsin-expressing) cell cultures. The degradation, followed via fluorescence recovery of the FRET system, is faster for the suspensions introduced in the hepsin expressing cell cultures.rnIn summary, this work tackles the domain of responsive nanomaterials for drug delivery from a new perspective. It presents the adaptation of the miniemulsion process for hybrid peptide-based materials, and their successful use in preparing specific enzyme-responsive nanoparticles, with hydrophilic payload release properties.rn
Resumo:
Isocyanates are included into a class with an extreme commercial importance because their use in the manufacture of polyurethanes. Polyurethanes are used in several applications such as adhesives, coatings, foams, thermoplastics resins, printing inks, foundry moulds and rubbers. Agglomerated cork stoppers are currently used for still wines, semi-sparkle and gaseous wines, beer and cider. Methylene diphenyl diisocyanate (MDI) is presently the isocyanate used in the production of polyurethane based adhesive in use due to its lowest toxicity comparing with toluene diisocyanate (TDI) previously employed. However, free monomeric TDI or MDI, depending on the based polyurethane, can migrate from agglomerated cork stoppers to beverages therefore it needs to be under control. The presence of these compounds are usually investigated by HPLC with Fluorescence or UV-Vis detector depending on the derivatising agent. Ultra Performance Liquid Chromatography with Diode Array Detector (UPLC-DAD) method is replacing HPLC. The objective of this study is to determine which method is better to analyze isocyanates from agglomerated cork stoppers, essentially TDI to quantify its monomer. A Design of Experiments (DOE) with three factors, column temperature, flow and solvent, at two levels was done. Eight experiments with three replications and two repetitions were developed. Through an ANOVA the significance of the factors was evaluated and the best level’s factors were selected. As the TDI has two isomers and in this method these two isomers were not always separated an ANOVA with results of resolution between peaks was performed. The Design of Experiments reveals to be a suitable statistical tool to determine the best conditions to quantified free isocyanates from agglomerated cork stoppers to real foodstuff. The best level’s factors to maximize area was column temperature at 30ºC, flow to 0,3 mL/min and solvent 0,1% Ammonium Acetate, to maximize resolution was the same except the solvent that was 0,01% Ammonium Acetate.
Resumo:
Toluene and verapamil are subject to extensive oxidative metabolism mediated by CYP enzymes, and their interaction can be stereoselective. In the present study we investigated the influence of toluene inhalation on the enantioselective kinetic disposition of verapamil and its metabolite, norverapamil, in rats. Male Wistar rats (n = 6 per group) received a single dose of racemic verapamil (10 mg/kg) orally at the fifth day of nose-only toluene or air (control group) inhalation for 6 h/day (25, 50, and 100 ppm). Serial blood samples were collected from the tail up to 6 h after verapamil administration. The plasma concentrations of verapamil and norverapamil enantiomers were analyzed by LC-MS/MS by using a Chiralpak AD column. Toluene inhalation did not influence the kinetic disposition of verapamil or norverapamil enantiomers (p > 0.05, Kruskal-Wallis test) in rats. The pharmacokinetics of verapamil was enantioselective in the control group, with a higher plasma proportion of the S-verapamil (AUC 250.8 versus 120.4 ng.h.mL(-1); p <= 0.05, Wilcoxon test) and S-norverapamil (AUC 72.3 versus 52.3 ng.h.mL(-1); p <= 0.05, Wilcoxon test). Nose-only exposure to toluene at 25, 50, or 100 ppm resulted in a lack of enantioselectivity for both verapamil and norverapamil. The study demonstrates the importance of the application of enantioselective methods in studies on the interaction between solvents and chiral drugs.
Resumo:
An active, solvent-free solid sampler was developed for the collection of 1,6-hexamethylene diisocyanate (HDI) aerosol and prepolymers. The sampler was made of a filter impregnated with 1-(2-methoxyphenyl)piperazine contained in a filter holder. Interferences with HDI were observed when a set of cellulose acetate filters and a polystyrene filter holder were used; a glass fiber filter and polypropylene filter cassette gave better results. The applicability of the sampling and analytical procedure was validated with a test chamber, constructed for the dynamic generation of HDI aerosol and prepolymers in commercial two-component spray paints (Desmodur(R) N75) used in car refinishing. The particle size distribution, temporal stability, and spatial uniformity of the simulated aerosol were established in order to test the sample. The monitoring of aerosol concentrations was conducted with the solid sampler paired to the reference impinger technique (impinger flasks contained 10 mL of 0.5 mg/mL 1-(2-methoxyphenyl)piperazine in toluene) under a controlled atmosphere in the test chamber. Analyses of derivatized HDI and prepolymers were carried out by using high-performance liquid chromatography and ultraviolet detection. The correlation between the solvent-free and the impinger techniques appeared fairly good (Y = 0.979X - 0.161; R = 0.978), when the tests were conducted in the range of 0.1 to 10 times the threshold limit value (TLV) for HDI monomer and up to 60-mu-g/m3 (3 U.K. TLVs) for total -N = C = O groups.
Resumo:
Commercial bentonite (BFN) and organoclay (WS35), as well as iron oxide/clay composite (Mag_BFN) and iron/oxide organoclay composite (Mag_S35) were prepared for toluene and naphthalene sorption. Mag_BFN and Mag_S35 were obtained, respectively, by the precipitation of iron oxide hydrates onto sodium BFN and S35 clay particles. The materials were characterized by powder X-ray diffraction (XRD), X-ray Fluorescence (XRF), and TG and DTA. From XRF results and TG data on calcined mass basis, a quantitative method was developed to estimate the iron compound contents of the composites, as well as the organic matter content present in WS35 and Mag_S35.
Resumo:
Various mesoporous catalysts with titanium loadings between 0.5 and 4 Ti wt. % and surface areas between 600 and 1,600 m(2)/g were synthesized using the molecular designed dispersion technique. These catalysts were tested using toluene oxidation in a fixed bed reactor at temperatures between 300 and 550degreesC. The reaction products were found to be CO2 and CO with selectivity towards CO2 above 80% for all catalysts. The catalytic activity of the catalysts increases with titanium loading. The total conversion at 550degreesC was not affected by the textural porosity, but increased textural porosity did significantly reduce the ignition temperature by up to 50degreesC. The Thiele modulus was calculated to be much less than one for all these materials indicating that the reaction rate is not diffusion, limited.
Resumo:
The catalytic properties of Pt based cordierite foam catalysts have been evaluated in catalytic combustion of toluene (800 ppm in air). The catalysts contain identical Pt content (0.1%) which was introduced by three different ways: Pt ion exchange on MFI zeolite and then coating on the foam; Pt ion exchange after zeolite coating and finally Pt directly wet impregnated on the cordierite foam. The catalytic behaviour of Pt foam based catalysts was compared with that of PtMFI zeolite under powder form. Pt exchanged MFI supported on the cordierite foams present an improvement of activity for toluene combustion of about 50 degrees C on the light off temperature (T-50%). The enhanced performance of the structured catalysts is due not only to the open structure of foams and homogeneous thin layers catalyst deposited on their cell walls, but also to the fact that the size and location of Pt particles present in MFI zeolite are changed during the dipping step. Indeed, as prepared Pt samples and those used in the preparation of the slurry were observed by transmission electron microscopy revealing that the chemical interaction of PtMFI zeolite with the binder and detergent, both present in the slurry, leads to an increase of Pt particles size which were found to migrate from internal pores to the external surface of zeolite crystallites thereby increasing catalytic activity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.
Resumo:
Objective Biomonitoring of solvents using the unchanged substance in urine as exposure indicator is still relatively scarce due to some discrepancies between the results reported in the literature. Based on the assessment of toluene exposure, the aim of this work was to evaluate the effects of some steps likely to bias the results and to measure urinary toluene both in volunteers experimentally exposed and in workers of rotogravure factories. Methods Static headspace was used for toluene analysis. o-Cresol was also measured for comparison. Urine collection, storage and conservation conditions were studied to evaluate possible loss or contamination of toluene in controlled situations applied to six volunteers in an exposure chamber according to four scenarios with exposure at stable levels from 10 to 50 ppm. Kinetics of elimination of toluene were determined over 24 h. A field study was then carried out in a total of 29 workers from two rotogravure printing facilities. Results Potential contamination during urine collection in the field is confirmed to be a real problem but technical precautions for sampling, storage and analysis can be easily followed to control the situation. In the volunteers at rest, urinary toluene showed a rapid increase after 2 h with a steady level after about 3 h. At 47.1 ppm the mean cumulated excretion was about 0.005% of the amount of the toluene ventilated. Correlation between the toluene levels in air and in end of exposure urinary sample was excellent (r = 0.965). In the field study, the median personal exposure to toluene was 32 ppm (range 3.6-148). According to the correlations between environmental and biological monitoring data, the post-shift urinary toluene (r = 0.921) and o-cresol (r = 0.873) concentrations were, respectively, 75.6 mu g/l and 0.76 mg/g creatinine for 50 ppm toluene personal exposure. The corresponding urinary toluene concentration before the next shift was 11 mu g/l (r = 0.883). Conclusion Urinary toluene was shown once more time a very interesting surrogate to o-cresol and could be recommended as a biomarker of choice for solvent exposure. [Authors]
Resumo:
Characterize ethylbenzene and xylene air concentrations, and explore the biological exposure markers (urinary t,t-muconic acid (t,t-MA) and unmetabolized toluene) among petroleum workers offshore. Offshore workers have increased health risks due to simultaneous exposures to several hydrocarbons present in crude oil. We discuss the pooled benzene exposure results from our previous and current studies and possible co-exposure interactions. BTEX air concentrations were measured during three consecutive 12-h work shifts among 10 tank workers, 15 process operators, and 18 controls. Biological samples were collected pre-shift on the first day of study and post-shift on the third day of the study. The geometric mean exposure over the three work shifts were 0.02 ppm benzene, 0.05 ppm toluene, 0.03 ppm ethylbenzene, and 0.06 ppm xylene. Benzene in air was significantly correlated with unmetabolized benzene in blood (r = 0.69, p < 0.001) and urine (r = 0.64, p < 0.001), but not with urinary t,t-MA (r = 0.27, p = 0.20). Toluene in air was highly correlated with the internal dose of toluene in both blood (r = 0.70, p < 0.001) and urine (r = 0.73, p < 0.001). Co-exposures were present; however, an interaction of metabolism was not likely at these low benzene and toluene exposures. Urinary benzene, but not t,t-MA, was a reliable biomarker for benzene at low exposure levels. Urinary toluene was a useful biomarker for toluene exposure. Xylene and ethylbenzene air levels were low. Dermal exposure assessment needs to be performed in future studies among these workers.