970 resultados para TOBACCO-SMOKE EXPOSURE
Resumo:
Abstract Background: Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. Objective: The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Methods: Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. Results: TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. Conclusion: TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.
Resumo:
Background and Aims: To protect the population from environmental tobacco smoke (ETS) Switzerland introduced a nationwide rather heterogeneous smoking ban in May 2010. The exposure situation of non-smoking hospitality workers before and after implementation of the new law is being assessed in a prospective cohort study. Methods: Exposure to ETS was measured using a novel method developed by the Institute for Work and Health in Lausanne. It is a passive sampler called MoNIC (Monitor of NICotine). The nicotine of the ETS is fixed onto a filter and transformed into salt of not volatile nicotine. Subsequently the number of passively smoked cigarettes is calculated. Badges were placed at the workplace as well as distributed to the participants for personal measuring. Additionally a salivary sample was taken to determine nicotine concentration. Results: At baseline Spearman's correlation between workplace and personal badge was 0.47. The average cigarette equivalents per day at the workplace obtained by badge significantly dropped from 5.1 (95%- CI: 2.4 to 7.9) at baseline to 0.3 (0.2 to 0.4) at first follow-up (n=29) three months later (p<0.001). For personal badges the number of passively smoked cigarettes declined from 1.5 (2.7 to 0.4) per day to 0.5 (0.3 to 0.8) (n=16).Salivary nicotine concentration in a subset of 13 participants who had worked on the day prior to the examination was 2.63 ng/ml before and 1.53 ng/ml after the ban (p=0.04). Spearman's correlation of salivary nicotine was 0.56 with workplace badge and 0.79 with personal badge concentrations. Conclusions: Workplace measurements clearly reflect the smoking regulation in a venue. The MoNIC badge proves to be a sensitive measuring device to determine personal ETS exposure and it is a demonstrative measure for communication with lay audiences and study participants as the number of passively smoked cigarettes is an easily conceivable result.
Resumo:
Background: Awareness of the negative effects of smoking on children's health prompted a decrease in the self-reporting of parental tobacco use in periodic surveys from most industrialized countries. Our aim is to assess changes between ETS exposure at the end of pregnancy and at 4 years of age determined by the parents' self-report and measurement of cotinine in age related biological matrices.Methods: The prospective birth cohort included 487 infants from Barcelona city (Spain). Mothers were asked about maternal and household smoking habit. Cord serum and children's urinary cotinine were analyzed in duplicate using a double antibody radioimmunoassay. Results: At 4 years of age, the median urinary cotinine level in children increased 1.4 or 3.5 times when father or mother smoked, respectively. Cotinine levels in children's urine statistically differentiated children from smoking mothers (Geometric Mean (GM) 19.7 ng/ml; 95% CI 16.83–23.01) and exposed homes (GM 7.1 ng/ml; 95% CI 5.61–8.99) compared with non-exposed homes (GM 4.5 ng/ml; 95% CI 3.71–5.48). Maternal self-reported ETS exposure in homes declined in the four year span between the two time periods from 42.2% to 31.0% (p < 0.01). Nevertheless, most of the children considered non-exposed by their mothers had detectable levels of cotinine above 1 ng/mL in their urine.Conclusion: We concluded that cotinine levels determined in cord blood and urine, respectively, were useful for categorizing the children exposed to smoking and showed that a certain increase in ETS exposure during the 4-year follow-up period occurred.
Resumo:
A passive sampling device called Monitor of NICotine or "MoNIC", was constructed and evaluated by IST laboratory for determining nicotine in Second Hand Tobacco Smoke (SHTS) or Environmental Tobacco Smoke (ETS). Vapour nicotine was passively collected on a potassium bisulfate treated glass fibre filter as collection medium. Analysis of collected nicotine on the treated filter by gas chromatography equipped with Thermoionic-Specific Detector (GC-TSD) after liquid-liquid extraction of 1mL of 5N NaOH : 1 mL of n-heptane saturated with NH3 using quinoline as internal standard. Based on nicotine amount of 0.2 mg/cigarette as the reference, the inhaled Cigarette Equivalents (CE) by non-smokers can be calculated. Using the detected CE on the badge for non-smokers, and comparing with amount of nicotine and cotinine level in saliva of both smokers and exposed non-smokers, we can confirm the use of the CE concept for estimating exposure to ETS. The regional CIPRET (Center of information and prevention of the addiction to smoking) of different cantons (Valais (VS), Vaud (VD), Neuchâtel (NE) and Fribourg (FR)) are going to organize a big campaign on the subject of the passive addiction to smoking. This campaign took place in 2007-2008 and has for objective to inform clearly the Swiss population of the dangerousness of the passive smoke. More than 3'900 MoNIC badges were gracefully distributed to Swiss population to perform a self-monitoring of population exposure level to ETS, expressed in term of CE. Non-stimulated saliva was also collected to determine ETS biomarkers nicotine/cotinine levels of participating volunteers. Results of different levels of CE in occupational and non-occupational situations in relation with ETS were presented in this study. This study, unique in Switzerland, has established a base map on the population's exposure to SHTS. It underscored the fact that all the Swiss people involved in this campaign (N=1241) is exposed to passive smoke, from <0.2 cig/d (10.8%), 1-2 to more than 10 cig/d (89.2%). In the area of high exposure (15-38 cig/d), are the most workers in public restaurant, cafe, bar, disco. By monitoring ETS tracer nicotine and its biomarkers, salivary nicotine and cotinine, it is demonstrated that the MoNIC badge can serve as indicator of CE passive smoking. The MoNIC badge, accompanied with content of salivary nicotine/cotinine can serve as a tool of evaluation of the ETS passive smoking and contributes to supply useful data for future epidemiological studies. It is also demonstrated that the salivary nicotine (without stimulation) is a better biomarker of ETS exposure than cotinine.
Resumo:
Background: Some countries have recently extended smoke-free policies to particular outdoor settings; however, there is controversy regarding whether this is scientifically and ethically justifiable. Objectives: The objective of the present study was to review research on secondhand smoke (SHS) exposure in outdoor settings. Data sources: We conducted different searches in PubMed for the period prior to September 2012. We checked the references of the identified papers, and conducted a similar search in Google Scholar. Study selection: Our search terms included combinations of"secondhand smoke,""environmental tobacco smoke,""passive smoking" OR"tobacco smoke pollution" AND"outdoors" AND"PM" (particulate matter),"PM2.5" (PM with diameter ≤ 2.5 µm),"respirable suspended particles,""particulate matter,""nicotine,""CO" (carbon monoxide),"cotinine,""marker,""biomarker" OR"airborne marker." In total, 18 articles and reports met the inclusion criteria. Results: Almost all studies used PM2.5 concentration as an SHS marker. Mean PM2.5 concentrations reported for outdoor smoking areas when smokers were present ranged from 8.32 to 124 µg/m3 at hospitality venues, and 4.60 to 17.80 µg/m3 at other locations. Mean PM2.5 concentrations in smoke-free indoor settings near outdoor smoking areas ranged from 4 to 120.51 µg/m3. SHS levels increased when smokers were present, and outdoor and indoor SHS levels were related. Most studies reported a positive association between SHS measures and smoker density, enclosure of outdoor locations, wind conditions, and proximity to smokers. Conclusions: The available evidence indicates high SHS levels at some outdoor smoking areas and at adjacent smoke-free indoor areas. Further research and standardization of methodology is needed to determine whether smoke-free legislation should be extended to outdoor settings.
Resumo:
Objective: the objectives were to analyze the cardiac effects of exposure to tobacco smoke (ETS), for a period of 30 days, alone and in combination with beta-carotene supplementation (BC). Research methods and procedures: Rats were allocated into: Air (control, n = 13); Air + BC (n = 11); ETS (n = 11); and BC + ETS (n = 9). In Air + BC and BC + ETS, 500 mg of BC were added to the diet. After three months of randomization, cardiac structure and function were assessed by echocardiogram. After that, animals were euthanized and morphological data were analyzed post-morten. One-way and two-way ANOVA were used to assess the effects of ETS, BC and the interaction between ETS and BC on the variables. Results: ETS presented smaller cardiac output (0.087 +/- 0.001 vs. 0.105 +/- 0.004 l/min; p = 0.007), higher left ventricular diastolic diameter (19.6 +/- 0.5 vs. 18.0 +/- 0.5 mm/kg; p = 0.024), higher left ventricular (2.02 +/- 0.05 vs. 1.70 +/- 0.03 g/kg; p < 0.001) and atrium (0.24 +/- 0.01 vs. 0.19 +/- 0.01 g/kg; p = 0.003) weight, adjusted to body weight of animals, and higher values of hepatic lipid hydroperoxide (5.32 +/- 0.1 vs. 4.84 +/- 0.1 nmol/g tissue; p = 0.031) than Air. However, considering those variables, there were no differences between Air and BC + ETS (0.099 +/- 0.004 l/min; 19.0 +/- 0.5 mm/kg; 1.83 +/- 0.04 g/kg; 0.19 +/- 0.01 g/kg; 4.88 +/- 0.1 nmol/g tissue, respectively; p > 0.05). Ultrastructural alterations were found in ETS: disorganization or loss of myofilaments, plasmatic membrane infolding, sarcoplasm reticulum dilatation, polymorphic mitochondria with swelling and decreased cristae. In BC + ETS, most fibers showed normal morphological aspects. Conclusion: One-month tobacco-smoke exposure induces functional and morphological cardiac alterations and BC supplementation attenuates this ventricular remodeling process.
Resumo:
OBJECTIVE: To evaluate the roles of oxidative stress and lipid peroxidation in the ventricular remodeling that is induced by tobacco smoke exposure after myocardial infarction.METHODS: After induced myocardial infarction, rats were allocated into two groups: C (control, n=25) and ETS (exposed to tobacco smoke, n=24). After 6 months, survivors were submitted to echocardiogram and biochemical analyses.RESULTS: Rats in the ETS group showed higher diastolic (C = 1.52 +/- 0.4 mm(2), ETS = 1.95 +/- 0.4 mm(2); p=0.032) and systolic (C = 1.03 +/- 0.3, ETS = 1.36 +/- 0.4 mm(2)/g; p=0.049) ventricular areas, adjusted for body weight. The fractional area change was smaller in the ETS group (C = 30.3 +/- 10.1 %, ETS = 19.2 +/- 11.1 %; p=0.024) and E/A ratios were higher in ETS animals (C = 2.3 +/- 2.2, ETS = 5.1 +/- 2.5; p=0.037). ETS was also associated with a higher water percentage in the lung (C = 4.8 (4.3-4.8), ETS = 5.5 (5.3-5.6); p=0.013) as well as higher cardiac levels of reduced glutathione (C = 20.7 +/- 7.6 nmol/mg of protein, ETS = 40.7 +/- 12.7 nmol/mg of protein; p=0.037) and oxidized glutathione (C = 0.3 +/- 0.1 nmol/g of protein, ETS = 0.9 +/- 0.3 nmol/g of protein; p=0.008). No differences were observed in lipid hydroperoxide levels (C = 0.4 +/- 0.2 nmol/mg of tissue, ETS = 0.1 +/- 0.1 nmol/mg of tissue; p=0.08).CONCLUSION: In animals exposed to tobacco smoke, oxidative stress is associated with the intensification of ventricular re-remodeling after myocardial infarction.
Resumo:
Background: We investigated the effects of length of exposure to tobacco smoke on the cardiac remodeling process induced by exposure to cigarette smoke in rats.Material/Methods: Rats were separated into 4 groups: nonsmoking (NS) 2 (n=25; control animals not exposed to tobacco smoke for 2 months), smoking (S)2 (n=22; rats exposed to smoke from 40 cigarettes/d for 2 months), NS6 (n=18; control animals not exposed to tobacco smoke for 6 months), and S6 (n=25; rats exposed to smoke from 40 cigarettes/d for 6 months). All animals underwent echocardiographic, isolated heart, and morphometric studies. Data were analyzed with a 2-way analysis of variance.Results: No interaction among the variables was found; this suggests that length of exposure to tobacco smoke did not influence the effects of exposure to smoke. Values for left ventricular diastolic diameter/body weight and left atrium/body weight were higher (p=0.023 and p=0.001, respectively) in smoking (S2 and S6) than in nonsmoking animals (NS2 and NS6). Left ventricular mass index was higher (p=0.048) in smoking than in nonsmoking animals. In the isovolumetrically beating ventricle, peak systolic pressure was higher (p=0.034) in smoking than in nonsmoking animals. Significantly higher values were found for left ventricular weight (p=0.017) and right ventricular weight (p=0.001) adjusted for body weight in smoking as opposed to nonsmoking animals. Systolic pressure was higher (p=0.001) in smoking (128 +/- 14 mm Hg) than in nonsmoking animals (112 +/- 11 mm Hg).Conclusions: Length of exposure to cigarette smoke did not influence cardiac remodeling caused by exposure to sm oke in rats.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background/Aims: To investigate the effect of taurine on cardiac remodeling induced by smoking. Methods: In the first step, rats were allocated into two groups: Group C (n=14): control; Group T (n=14): treated with taurine (3% in drinking water), for three months. In the second step, rats were allocated into two groups: Group ETS (n=9): rats exposed to tobacco smoke; Group ETS-T (n=9): rats exposed to tobacco smoke and treated with taurine for two months. Results: After three months, taurine presented no effects on morphological or functional variables of normal rats assessed by echocardiogram. on the other hand, after two months, ETS-T group presented higher LV wall thickness (ETS=1.30 (1.20-1.42); ETS-T=1.50 (1.40-1.50); p=0.029), E/A ratio (ETS=1.13 +/- 0.13; ETS-T=1.37 +/- 0.26; p=0.028), and isovolumetric relaxation time normalized for heart rate (ETS=53.9 +/- 4.33; ETS-T=72.5 +/- 12.0; p<0.001). The cardiac activity of the lactate dehydrogenase was higher in the ETS-T group (ETS=204 +/- 14 nmol/mg protein; ETS-T=232 +/- 12 nmol/mg protein; p<0.001). ETS-T group presented lower levels of phospholamban (ETS=1.00 +/- 0.13; ETS-T=0.82 +/- 0.06; p=0.026), phosphorylated phospholamban at Ser16 (ETS=1.00 +/- 0.14;ETS-T=0.63 +/- 0.10;p=0.003), and phosphorylated phosfolamban/phospholamban ratio (ETS=1.01 +/- 0.17; ETS-T=0.77 +/- 0.11; p=0.050). Conclusion: In normal rats, taurine produces no effects on cardiac morphological or functional variables. on the other hand, in rats exposed to cigarette smoke, taurine supplementation increases wall thickness and worsens diastolic function, associated with alterations in calcium handling protein and cardiac energy metabolism. Copyright (C) 2011 S. Karger AG, Basel