985 resultados para TKM6 rice cultivar
Resumo:
The degree of blast resistance of upland rice (Oryza sativa L.) cultivar Araguaia has decreased over time causing significant yield losses. The major objective of this study was to obtain blast (Pyricularia grisea) resistant somaclones, adapting greenhouse and field selection procedures. Rice blast resistance and agronomic traits were assessed in R2 to R6 generations derived from regenerant plants (R1) from immature panicles of Araguaia. The evaluation and selection procedures include testing of early segregating populations and fixed lines in the advanced generations, under natural field conditions, and artificial inoculations in the greenhouse, with prevalent races IB-1 and IB-9 of P. grisea. Somaclones with both vertical resistance and slow blasting resistance were obtained. Twenty of 31 somaclones developed with a high degree of vertical resistance and fan shaped plant type maintained resistance in field and blast nursery tests in the R6 generation. Greenhouse selection with two specific physiologic races yielded 44 somaclones with slow blasting resistance, similar plant type and yield potential as that of Araguaia.
Resumo:
Rice blast is a major yield constraint of the irrigated rice in the State of Tocantins, Brazil. The objective of this investigation was to study the phenotypic and genetic diversity within the pathogen population of Pyricularia grisea in samples collected from four individual farms of rice cultivar Metica-1, under epidemic conditions of leaf blast. A set of 87 isolates was tested on 32 rice genotypes including eight international differentials. Considering 80% similarity in virulence, two groups comprising a total of 81 isolates were recognized, independently of the farms from which they were collected. Eighty percent of the isolates pertained to pathotype ID-14, indicating high cultivar specificity and narrow diversity of virulence in the sample population. The virulence in pathogen population on rice cultivars BR-IRGA 409 and Rio Formoso was low. Analysis of P. grisea isolates using rep-PCR with two primer sequences from Pot2 generated fingerprint profiles of one to nine bands. Cluster analysis revealed the occurrence of six fingerprint groups with similarities ranging from 0.09 to 1. There was no straight relationship between virulence of the isolates based on reaction pattern on 32 genotypes and grouping based on Pot2 rep-PCR analysis of P. grisea isolates collected from 'Metica-1'.
Resumo:
The gene Pi-ar confers resistance to Pyricularia grisea race IB-45 in a somaclone derived from immature panicles of the susceptible rice (Oryza sativa) cultivar Araguaia. RAPD technique was used to identify molecular markers linked to this gene utilizing bulked segregant analysis. Initially, the two parental DNAs from the resistant donor SC09 and 'Araguaia' were analyzed using random primers. Of the 240 primers tested, 203 produced amplification products. The two parental DNAs along with the resistant and susceptible bulks of F2 population were screened using 48 primers that differentiated resistant and susceptible parents. Even though eight primers differentiated the resistant bulk from the susceptible bulk, as well as somaclone SC09 and 'Araguaia', only one primer, OPC02 ('GTGAGGCGTC'), was found to be tightly linked (1.7cM) to the resistance gene of somaclone SC09.
Resumo:
A study was carried out to identify the factors that contributed to the natural spread and uptake of a rainfed rice variety named Agya Amoah in the Western Region of Ghana after introduction of a small amount (0.5 kg) of seed in 1987 by a small-scale farmer. Fifteen years after its introduction over 73% of rice farmers had grown the variety in the Western Region. Initial awareness of the variety was created by information provided mainly by friends, seeing the variety grown in fields and from relatives. Seed for initial planting of the variety was purchased from other farmers by 67% of farmers, but in the most recent season 77% of farmers used their own saved seed. Annual incremental income per household from the replacement of the previously most widely grown variety with Agya Amoah was estimated to be US $282. The results show that informal systems can result in relatively fast spread and extensive uptake. Local seed systems need to be understood to design appropriate activities that are likely to lead to rapid spread and equitable distribution of introduced varieties, irrespective of characteristics such as wealth and kin.
Resumo:
We have investigated OsHKT2;1 natural variation in a collection of 49 cultivars with different levels of salt tolerance and geographical origins. The effect of identified polymorphism on OsHKT2;1 activity was analysed through heterologous expression of variants in Xenopus oocytes. OsHKT2;1 appeared to be a highly conserved protein with only five possible amino acid substitutions that have no substantial effect on functional properties. Our study, however, also identified a new HKT isoform, No-OsHKT2;2/1 in Nona Bokra, a highly salt-tolerant cultivar. No-OsHKT2;2/1 probably originated from a deletion in chromosome 6, producing a chimeric gene. Its 5¢ region corresponds to that of OsHKT2;2, whose full-length sequence is not present in Nipponbare but has been identified in Pokkali, a salt-tolerant rice cultivar. Its 3¢ region corresponds to that of OsHKT2;1. No-OsHKT2;2/1 is essentially expressed in roots and displays a significant level of expression at high Na+ concentrations, in contrast to OsHKT2;1. Expressed in Xenopus oocytes or in Saccharomyces cerevisiae, No-OsHKT2;2/1 exhibited a strong permeability to Na+ and K+, even at high external Na+ concentrations, like OsHKT2;2, and in contrast to OsHKT2;1. Our results suggest that No-OsHKT2;2/1 can contribute to Nona Bokra salt tolerance by enabling root K+ uptake under saline conditions.
Resumo:
To produce agronomically competitive rice with nutritionally superior, environmentally safe phytic acid (PA) levels, hairpin RNA (hpRNA)- and artificial microRNA (amiRNA)-mediated gene silencing approaches were explored to reduce both myo-inositol kinase gene (OsMIK) expression and PA accumulation in rice seeds. hpRNA and amiRNA sequences targeted to OsMIK (hpMIK and amiMIK), under the control of a rice Ole18 promoter, were transformed into the rice cultivar Nippon-bare. Fourteen and 21 independent transgenic events were identified containing the hpMIK and amiMIK constructs, respectively, from which five stable homozygous transgenic lines of each were developed together with their null siblings. Southern blotting demonstrated transgene integration into the genome and quantitative real-time PCR showed that gene silencing was restricted to seeds. OsMIK transcripts were significantly reduced in both transgenic amiMIK and hpMIK seeds, which had PA levels reduced by 14.9-50.2 and 38.1-50.7 %, respectively, compared with their respective null siblings. There were no systematic significant differences in agronomic traits between the transgenic lines and their non-transgenic siblings, and no correlation between seed PA contents and decreased rates of seed germination and seedling emergence. The results of the present study suggest that Ole 18-driven OsMIK silencing via hpRNA and amiRNA could be an effective way to develop agronomically competitive low phytic acid rice.
Resumo:
Silicon is considered an important chemical element for rice, because it can improve tolerance to biotic and abiotic stress. However, in many situations no positive effect of silicon was observed, probably due to genetic factors. The objective of this research was to monitor Si uptake kinetics and identify responses of rice cultivars in terms of Si uptake capacity and use. The experiment was carried out in a greenhouse of the São Paulo State University (UNESP), Brazil. The experiment was arranged in a completely randomized, factorial design with three replications. that consisted of two rice cultivars and two Si levels. Kinetic parameters (Vmax, Km, and Cmin), root morphology variables, dry matter yield, Si accumulation and levels in shoots and roots, uptake efficiency, utilization efficiency, and root/shoot ratio were evaluated. Higher Si concentrations in the nutrient solution did not increase rice dry matter. The development of the low-affinity silicon uptake system of the rice cultivar 'Caiapó' was better than of 'Maravilha'.
Resumo:
It is well-known nowadays that soil variability can influence crop yields. Therefore, to determine specific areas of soil management, we studied the Pearson and spatial correlations of rice grain yield with organic matter content and pH of an Oxisol (Typic Acrustox) under no- tillage, in the 2009/10 growing season, in Selvíria, State of Mato Grosso do Sul, in the Brazilian Cerrado (longitude 51º24' 21'' W, latitude 20º20' 56'' S). The upland rice cultivar IAC 202 was used as test plant. A geostatistical grid was installed for soil and plant data collection, with 120 sampling points in an area of 3.0 ha with a homogeneous slope of 0.055 m m-1. The properties rice grain yield and organic matter content, pH and potential acidity and aluminum content were analyzed in the 0-0.10 and 0.10-0.20 m soil layers. Spatially, two specific areas of agricultural land management were discriminated, differing in the value of organic matter and rice grain yield, respectively with fertilization at variable rates in the second zone, a substantial increase in agricultural productivity can be obtained. The organic matter content was confirmed as a good indicator of soil quality, when spatially correlated with rice grain yield.
Resumo:
The influence of K2O (0, 40, 80, 120 kg ha-1) at varying rates of N application (0, 30, 60 kg ha-1) at planting, on panicle blast (Pyricularia grisea (Cooke) Sacc.) was studied in a field experiment conducted during three consecutive years with the upland rice cultivar Douradão. Panicle blast severity decreased with increasing rates of potassium in the absence of nitrogen (N0). The relationship between panicle blast and K rates was quadratic at 30 kg ha-1 of nitrogen. Significant response to K fertilization was not obtained at 60 kg ha-1 of nitrogen in relation to panicle blast severity.
Resumo:
The objective of this work was to develop new irrigated rice lines tolerant to imidazolinone herbicides. The backcross breeding procedure was used to transfer the imidazolinone tolerance allele from mutant 93AS3510 to the recurrent parents 'BRS 7 Taim' and 'BRS Pelota'. Individual herbicide-tolerant plants were selected in each generation, for three backcrossings (RC1 to RC3), followed by three selfing generations (RC3F1 to RC3F3). The best four RC3F3 lines for agronomic traits were genotyped with 44 microsatellite markers. The observed conversion index of the new imidazolinone-tolerant lines varied from 91.86 to 97.67%. Pairwise genetic distance analysis between these lines and 22 accessions from the Embrapa's Rice Germplasm Bank clustered the new lines with their respective recurrent parents, but not with 'IRGA 417', which was originally used as recurrent parent to derive IRGA 422 CL, the only imidazolinone-tolerant irrigated rice cultivar recommended for cultivation in Brazil. Therefore, these lines represent new options of genetically diverse imidazolinone-tolerant rice accessions. Lines CNA10756 ('BRS Sinuelo CL') and CNA10757 will be released for cultivation in the Clearfield irrigated rice production system in Rio Grande do Sul, Brazil.
Resumo:
The objective of this work was to evaluate gas exchange rates, plant height, yield components, and productivity of upland rice, as affected by type and application time of plant growth regulators. A randomized block design, in a 4x2 factorial arrangement, with four replicates was used. Treatments consisted of three growth regulators (mepiquat chloride, trinexapac-ethyl, and paclobutrazol), besides a control treatment applied at two different phenological stages: early tillering or panicle primordial differentiation. The experiment was performed under sprinkler-irrigated field conditions. Net CO2 assimilation, stomatal conductance, plant transpiration, and water-use efficiency were measured four times in Primavera upland rice cultivar, between booting and milky grain phenophases. Gas exchange rates were neither influenced by growth regulators nor by application time. There was, however, interaction between these factors on the other variables. Application of trinexapac-ethyl at both tillering and differentiation stages reduced plant height and negatively affected yield components and rice productivity. However, paclobutrazol and mepiquat chloride applied at tillering, reduced plant height without affecting rice yield. Mepiquat chloride acted as a growth stimulator when applied at the differentiation stage, and significantly increased plant height, panicle number, and grain yield of upland rice.
Resumo:
A field experiment conducted with the irrigated rice cultivar BRS Formoso, to assess the efficiency of calcinated serpentinite as a silicon source on grain yield was utilized to study its effect on leaf blast severity and tissue sugar levels. The treatments consisted of five rates of calcinated serpentinite (0, 2, 4, 6, 8 Mg.ha-1) incorporated into the soil prior to planting. The leaf blast severity was reduced at the rate of 2.96% per ton of calcinated serpentinite. The total tissue sugar content decreased significantly as the rates of serpentinite applied increased (R² = 0.83). The relationship between the tissue sugar content and leaf blast severity was linear and positive (R² = 0.81). The decrease in leaf blast severity with increased rates of calcinated serpentinite was also linear (R²= 0.96) and can be ascribed to reduced sugar level.
Resumo:
Red rice is a troublesome weed in irrigated rice production and is spread through contaminated commercial rice seed and machinery. Seed dormancy is a major trait for red rice. Studies were carried out at two locations to determine red rice seed longevity in the soil of several ecotypes from four US states. Five months after burial near Beaumont, Texas only three ecotypes had viable seed (<1%) when buried at 5 cm, but 9 ecotypes had viable seed after two years when buried at 25 cm. At the thirty-sixth month after burial, ecotypes Arkansas 2, Louisiana 2 and 4, Mississippi 4 and Texas 1 had viable seeds, but at less than 1%. Freshly harvested red rice seeds buried at 12 cm near College Station, TX, survived longer than seeds placed on the soil surface. The percentage of maximum viable seeds was 2% for blackhull type Texas 4, after 17 months. In both studies, commercial rice cultivar seeds were not viable after 5 months, regardless of their position in the soil. Under farming conditions with no fallow land preparations or deep tillage, most red rice seed germinated or was dead after 2 to 3 years, with only minor variation among ecotypes.