953 resultados para TITANIUM-DIOXIDE FILMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optically transparent, mesostructured titanium dioxide thin films were fabricated using an amphiphilic poly(alkylene oxide) block copolymer template in combination with retarded hydrolysis of a titanium isopropoxide precursor. Prior to calcination, the films displayed a stable hexagonal mesophase and high refractive indices (1.5 to 1.6) relative to mesostructured silica (1.43). After calcination, the hexagonal mesophase was retained with surface areas >300 m2 g-1. The dye Rhodamine 6G (commonly used as a laser dye) was incorporated into the copolymer micelle during the templating process. In this way, novel dye-doped mesostructured titanium dioxide films were synthesised. The copolymer not only directs the film structure, but also provides a solubilizing environment suitable for sustaining a high monomer-to-aggregate ratio at elevated dye concentrations. The dye-doped films displayed optical thresholdlike behaviour characteristic of amplified spontaneous emission. Soft lithography was successfully applied to micropattern the dye-doped films. These results pave the way for the fabrication and demonstration of novel microlaser structures and other active optical structures. This new, high-refractive index, mesostructured, dye-doped material could also find applications in areas such as optical coatings, displays and integrated photonic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure and scandium doped-TiO2 thin films were prepared by the sol-gel process and coated by dip coating. The effects of scandium on the phase formation, optical properties and photoactivity of the TiO2 thin films were investigated. The lattice parameters and the crystallinity of the anatase phase, characterized by the Rietveld method, demonstrated that scandium doping affected the structural parameters and crystallinity of the films, modifying the absorption edge. A direct correlation was found between band gap energy and photodegradation efficiency, with lower values of band gap energy augmenting this efficiency. Moreover, a significant improvement in the catalyst's photodegradation efficiency was attained with a scandium concentration of 5.0 mol%. © 2007 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of anatase and rutile domains on nanocrystalline films of P25 TiO(2), as well as the distinct coordination modes of carboxylates on those phases, were revealed by confocal Raman microscopy, a technique that showed to be suitable for imaging the chemical morphology down to submicrometric size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical processes in industrial effluents have been studied as a means to obtain higher efficiency in wastewater treatment. Heterogeneous photocatalysis appears as a low-cost alternative through the use of lower wattage lamps and thermal TiO2 films. Photocatalysis became a clean process for water treatment due to hydroxyl radicals generated on semiconductor surface. Such radicals are able to degrade several organic compounds. This study used different electrodes and analytical methods for degradation of phenol molecules to reduce treatment costs, improve efficiency, and identify compounds formed during the decomposition of phenolic molecules. Thermal growth of TiO2 film was observed on the titanium electrode in rutile form. Application of an electrical potential on the Ti/TiO2 working electrode increases efficiency in reducing concentration of phenol after photocatalytic treatment. Still, high energy radiation (UVC) showed best degradation rates in photolytic process. Different compounds formed during the degradation of phenol were also identified in the UVC-PE treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the photoelectrocatalytic behavior of bromide and generation of bromine using TiO2 was investigated in the separate anode and cathode reaction chambers. Our results show that the generation of bromine begins around a flatband potential of -0.34 V vs. standard calomel electrode (SCE) at pH 3.0 under UV illumination and increases with an increase in positive potential, finally reaching a steady-state concentration at 1.0 V vs. SCE. Maximum bromine formation occurs over the range of pH 4-6, decreasing sharply at conditions where the pH > 7. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In hybrid organic solar cells a blocking layer between transparent electrode and nanocrystalline titania particles is essential to prevent short-circuiting and current loss through recombination at the electrode interface. Here the preparation of a uniform hybrid blocking layer which is composed of conducting titania nanoparticles embedded in an insulating polymer derived ceramic is presented. This blocking layer is prepared by sol-gel chemistry where an amphiphilic block copolymer is used as a templating agent. A novel poly(dimethylsiloxane) containing amphiphilic block copolymer poly(ethyleneglycol)methylethermethacrylate-block-poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate has been synthesized to act as the templating agent. Plasma treatment uncovered titania surface from any polymer. Annealing at 450°C under nitrogen resulted in anatase titania with polymer derived silicon oxycarbide ceramic. Electrical characterization by conductive scanning probe microscopy experiments revealed a percolating titania network separated by an insulating ceramic matrix. Scanning Kelvin probe force microscopy showed predominant presence of titania particles on the surface creating a large surface area for dye absorption. The uniformity of the percolating structures was proven by microbeam grazing incidence small angle x-ray scattering. First applications in hybrid organic solar cells in comparison with conventional titanium dioxide blocking layer containing devices revealed 15 fold increases in corresponding efficiencies. Poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate and poly(ethyleneoxide)-poly(dimethylsiloxane)methylmethacrylate diblock copolymers were also synthesized. Their titania nanocomposite films were compared with the integrated blocking layer. Liner poly(ethyleneoxide) containing diblock copolymer resulted in highly ordered foam like structures. The effect of heating temperature rise to 600°C and 1000°C on titania morphology was investigated by scanning electron and force microscopy and x-ray scattering. Sol-gel contents, hydrochloric acid, titania precursor and amphiphilic triblock copolymer were altered to see their effect on titania morphology. Increase in block copolymer content resulted in titania particles of diameter 15-20 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparison has been made between the spectroscopic properties of the laser dye rhodamine 6G (R6G) in mesostructured titanium dioxide (TiO2) and in ethanol. Steady-state excitation and emission techniques have been used to probe the dye-matrix interactions. We show that the TiO2-nanocomposite studied is a good host for R6G, as it allows high dye concentrations, while keeping dye molecules isolated, and preventing aggregation. Our findings have important implications in the context of solid state dye-lasers and microphotonic device applications. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water treatment using photocatalysis has gained extensive attention in recent years. Photocatalysis is promising technology from green chemistry point of view. The most widely studied and used photocatalyst for decomposition of pollutants in water under ultraviolet irradiation is TiO2 because it is not toxic, relatively cheap and highly active in various reactions. Within this thesis unmodified and modified TiO2 materials (powders and thin films) were prepared. Physico-chemical properties of photocatalytic materials were characterized with UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, time-of-flight secondary ion mass spectrometry (ToF-SIMS), Raman spectroscopy, goniometry, diffuse reflectance measurements, thermogravimetric analysis (TGA) and nitrogen adsorption/desorption. Photocatalytic activity of prepared samples in aqueous environment was tested using model compounds such as phenol, formic acid and metazachlor. Also purification of real pulp and paper wastewater effluent was studied. Concentration of chosen pollutants was measured with high pressure liquid chromatography (HPLC). Mineralization and oxidation of organic contaminants were monitored with total organic carbon (TOC) and chemical oxygen demand (COD) analysis. Titanium dioxide powders prepared via sol-gel method and doped with dysprosium and praseodymium were photocatalytically active for decomposition of metazachlor. The highest degradation rate of metazachlor was observed when Pr-TiO2 treated at 450ºC (8h) was used. The photocatalytic LED-based treatment of wastewater effluent from plywood mill using commercially available TiO2 was demonstrated to be promising post-treatment method (72% of COD and 60% of TOC was decreased after 60 min of irradiation). The TiO2 coatings prepared by atomic layer deposition technique on aluminium foam were photocatalytically active for degradation of formic and phenol, however suppression of activity was observed. Photocatalytic activity of TiO2/SiO2 films doped with gold bipyramid-like nanoparticles was about two times higher than reference, which was not the case when gold nanospheres were used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium oxide (TiO(2)) has been extensively applied in the medical area due to its proved biocompatibility with human cells [1]. This work presents the characterization of titanium oxide thin films as a potential dielectric to be applied in ion sensitive field-effect transistors. The films were obtained by rapid thermal oxidation and annealing (at 300, 600, 960 and 1200 degrees C) of thin titanium films of different thicknesses (5 nm, 10 nm and 20 nm) deposited by e-beam evaporation on silicon wafers. These films were analyzed as-deposited and after annealing in forming gas for 25 min by Ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy (RAMAN), Atomic Force Microscopy (AFM), Rutherford Backscattering Spectroscopy (RBS) and Ti-K edge X-ray Absorption Near Edge Structure (XANES). Thin film thickness, roughness, surface grain sizes, refractive indexes and oxygen concentration depend on the oxidation and annealing temperature. Structural characterization showed mainly presence of the crystalline rutile phase, however, other oxides such Ti(2)O(3), an interfacial SiO(2) layer between the dielectric and the substrate and the anatase crystalline phase of TiO(2) films were also identified. Electrical characteristics were obtained by means of I-V and C-V measured curves of Al/Si/TiO(x)/Al capacitors. These curves showed that the films had high dielectric constants between 12 and 33, interface charge density of about 10(10)/cm(2) and leakage current density between 1 and 10(-4) A/cm(2). Field-effect transistors were fabricated in order to analyze I(D) x V(DS) and log I(D) x Bias curves. Early voltage value of -1629 V, R(OUT) value of 215 M Omega and slope of 100 mV/dec were determined for the 20 nm TiO(x) film thermally treated at 960 degrees C. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cylindrospermopsis raciborskii produces the cyanotoxin cylindrospermopsin, which is commonly found in SouthEast Queensland water reservoirs, and has been responsible for the closure of these reservoirs as a source of drinking water in recent times. Thus, alternative more effective treatment methods need to be investigated for the removal of toxins such as cylindrospermopsin. This study examined the effectiveness of two brands of titanium dioxide under UV photolysis for the degradation of cylindrospermopsin. Results indicate that titanium dioxide is an efficient photocatalyst for cylindrospermopsin degradation. The titanium dioxide (TiO2), brand Degussa P-25 was found to be more efficient than the alternate brand Hombikat UV-100. There was an influence from solution pH (4, 7, and 9) with both brands of titanium dioxide, with high pH resulting in the best degradation rate. Importantly, there was no adsorption of cylindrospermopsin to titanium dioxide particles as seen with other cyanotoxins, which would adversely influence the degradation rate. Degradation rates were not influenced by temperature (19-34 degreesC) when P-25 was the source of TiO2, some temperature influence was observed with UV-100. Dissolved organic carbon concentration will reduce the efficiency of titanium dioxide for cylindrospermopsin degradation, however the presence of other inorganic matter in natural waters greatly assists the photocatalytic process. With minimal potentially toxic by-product formation expected with this treatment, and the effective degradation of cylindrospermopsin, titanium dioxide UV photolysis is a promising speculative alternative water treatment method. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of TiO2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 degrees C. The undoped films were implanted with Au fiuences in the range of 5 x 10(15) Au/cm(2)-1 x 10(17) Au/cm(2) with a energy of 150 keV. At a fluence of 5 x 10(16) Au/cm(2) the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 degrees C, reaching the precipitates dimensions larger than 40 nm at 600 degrees C. Annealing above 700 degrees C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation "Identification of turning points in the research on titanium dioxide production and application" aims at detecting in scientific literatures emerging trends and sudden changes in titanium dioxide production and application. These key changes are then studied to determine its transient patterns and its effect on the research on titanium dioxide production and application The source of information is from bibliographic data which discussed titanium dioxide production and application. These bibliographic data where obtained from ISI Web of Knowledge and then formed into a network of clusters by applying software called Citespace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis was to identify the best grease removal technique with the application of low power of UV light to TiO2 coated grease filters. The treatment with various power series of ozone generating and ozone free lamps to normal grease filters and TiO2 coated grease filters were examined and the obtained results are compared to each other in this paper. The effect of ozone reaction was observed and compared with the effect of TiO2. The experiments were solely based on the photo oxidation and photo catalytic oxidation reactions. TiO2 is a green catalyst used in the photocatalytic reaction. Sunflower oil was used for grease production and tetracholoroethylene as a solvent. Grease samples were collected from the ventilation duct connected to the cooking hood system. Sample extraction was done in ultrasonic bath with the principle of sonication. The sample analysis was done by FTIR machine. The result determining the concentration of grease was the quantification of saturated C-H bonds in the chosen peak group of the spectrum. A very low power of UVC light functions perfectly with the Titanium dioxide. The experimental results have shown the combined treatment of titanium dioxide and UV light is an effective method in grease removal process. The photocatalytic reaction with titanium dioxide is better than photo oxidation reaction with ozone treatment. Photocatalytic reaction is environmentally friendly, energy efficient and economical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toxicity of effluent from a titanium dioxide factory containing sulphuric acid residue with soluble iron metallic salts and insoluble material such as silica, etc. on fishes, decapods and molluscs was studied. The effluent caused changes in pH and oxygen depletion of the sea water. Sublethal effects of the precipitate of ferrous salts were also studied. Dilutions of effluent up to 1:150 were LC100 for all organisms used while 1:200 dilution was LC50 for fishes at 36 hr and for other organisms at 48 hr. But death of organisms at this concentration was caused by pH changes and oxygen depletion and did not account for the effects of the precipitate. Below this level precipitation started soon after mixing with sea water causing death of organisms by choking their gills and siphons. Dilutions,< 1:1000 were 96 hr LCO.