902 resultados para TIME-TREND ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Child sexual abuse is widespread and difficult to detect. To enhance case identification, many societies have enacted mandatory reporting laws requiring designated professionals, most often police, teachers, doctors and nurses, to report suspected cases to government child welfare agencies. Little research has explored the effects of introducing a reporting law on the number of reports made, and the outcomes of those reports. This study explored the impact of a new legislative mandatory reporting duty for child sexual abuse in the State of Western Australia over seven years. We analysed data about numbers and outcomes of reports by mandated reporters, for periods before the law (2006-08) and after the law (2009-12). Results indicate that the number of reports by mandated reporters of suspected child sexual abuse increased by a factor of 3.7, from an annual mean of 662 in the three year pre-law period to 2448 in the four year post-law period. The increase in the first two post-law years was contextually and statistically significant. Report numbers stabilised in 2010-12, at one report per 210 children. The number of investigated reports increased threefold, from an annual mean of 451 in the pre-law period to 1363 in the post-law period. Significant decline in the proportion of mandated reports that were investigated in the first two post-law years suggested the new level of reporting and investigative need exceeded what was anticipated. However, a subsequent significant increase restored the pre-law proportion, suggesting systemic adaptive capacity. The number of substantiated investigations doubled, from an annual mean of 160 in the pre-law period to 327 in the post-law period, indicating twice as many sexually abused children were being identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil fertility constraints to crop production have been recognized widely as a major obstacle to food security and agro-ecosystem sustainability in sub-Saharan West Africa. As such, they have led to a multitude of research projects and policy debates on how best they should be overcome. Conclusions, based on long-term multi-site experiments, are lacking with respect to a regional assessment of phosphorus and nitrogen fertilizer effects, surface mulched crop residues, and legume rotations on total dry matter of cereals in this region. A mixed model time-trend analysis was used to investigate the effects of four nitrogen and phosphorus rates, annually applied crop residue dry matter at 500 and 2000 kg ha^-1, and cereal-legume rotation versus continuous cereal cropping on the total dry matter of cereals and legumes. The multi-factorial experiment was conducted over four years at eight locations, with annual rainfall ranging from 510 to 1300 mm, in Niger, Burkina Faso, and Togo. With the exception of phosphorus, treatment effects on legume growth were marginal. At most locations, except for typical Sudanian sites with very low base saturation and high rainfall, phosphorus effects on cereal total dry matter were much lower with rock phosphate than with soluble phosphorus, unless the rock phosphate was combined with an annual seed-placement of 4 kg ha^-1 phosphorus. Across all other treatments, nitrogen effects were negligible at 500 mm annual rainfall but at 900 mm, the highest nitrogen rate led to total dry matter increases of up to 77% and, at 1300 mm, to 183%. Mulch-induced increases in cereal total dry matter were larger with lower base saturation, reaching 45% on typical acid sandy Sahelian soils. Legume rotation effects tended to increase over time but were strongly species-dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to explore the trend of Purpose Built Office (PBO) supply and occupancy in Malaysia. In achieving this, the number of PBO supply by the private sector in the market is compared with the government sector to gain an understanding of the current emerging market for the PBO. There have been limited studies in Malaysia comparing the trend supply and occupancy of PBOs by both sectors. This paper outcome will illustrate the needs for public sector asset management in Malaysia, particularly for PBOs. An analytical framework is developed using time series to measure the level of supply and occupancy of PBO by both sectors, indicating the percentage of government’s PBO compared to the total numbers of PBOs in the market from 2004 to 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crashes on motorway contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence reduce crashes will help address congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a Short time window around the time of crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques, that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists, and that this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with traffic flow data of one hour prior to the crash using an incident detection algorithm. Traffic flow trends (traffic speed/occupancy time series) revealed that crashes could be clustered with regards of the dominant traffic flow pattern prior to the crash. Using the k-means clustering method allowed the crashes to be clustered based on their flow trends rather than their distance. Four major trends have been found in the clustering results. Based on these findings, crash likelihood estimation algorithms can be fine-tuned based on the monitored traffic flow conditions with a sliding window of 60 minutes to increase accuracy of the results and minimize false alarms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the growing importance of the Chinese tourist market to Australia, an understanding of Chinese tourists' arrival patterns is essential to accurate forecasting of future arrivals. Drawing on 25 years of records (1991-2015), this study developed a time-series model of monthly arrivals of Chinese tourists in Australia. The model reflects the exponentially increasing trend and strong seasonality of arrivals. Excellent results from validation of the model's forecasts endorsed this time-series model's potential in the policy prescription and management practice of Australian tourism industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This case study deals with the role of time series analysis in sociology, and its relationship with the wider literature and methodology of comparative case study research. Time series analysis is now well-represented in top-ranked sociology journals, often in the form of ‘pooled time series’ research designs. These studies typically pool multiple countries together into a pooled time series cross-section panel, in order to provide a larger sample for more robust and comprehensive analysis. This approach is well suited to exploring trans-national phenomena, and for elaborating useful macro-level theories specific to social structures, national policies, and long-term historical processes. It is less suited however, to understanding how these global social processes work in different countries. As such, the complexities of individual countries - which often display very different or contradictory dynamics than those suggested in pooled studies – are subsumed. Meanwhile, a robust literature on comparative case-based methods exists in the social sciences, where researchers focus on differences between cases, and the complex ways in which they co-evolve or diverge over time. A good example of this is the inequality literature, where although panel studies suggest a general trend of rising inequality driven by the weakening power of labour, marketisation of welfare, and the rising power of capital, some countries have still managed to remain resilient. This case study takes a closer look at what can be learned by applying the insights of case-based comparative research to the method of time series analysis. Taking international income inequality as its point of departure, it argues that we have much to learn about the viability of different combinations of policy options by examining how they work in different countries over time. By taking representative cases from different welfare systems (liberal, social democratic, corporatist, or antipodean), we can better sharpen our theories of how policies can be more specifically engineered to offset rising inequality. This involves a fundamental realignment of the strategy of time series analysis, grounding it instead in a qualitative appreciation of the historical context of cases, as a basis for comparing effects between different countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the use of Association Rule Mining (ARM) and our proposed Transaction based Rule Change Mining (TRCM) to identify the rule types present in tweet’s hashtags over a specific consecutive period of time and their linkage to real life occurrences. Our novel algorithm was termed TRCM-RTI in reference to Rule Type Identification. We created Time Frame Windows (TFWs) to detect evolvement statuses and calculate the lifespan of hashtags in online tweets. We link RTI to real life events by monitoring and recording rule evolvement patterns in TFWs on the Twitter network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of record-breaking events expected to occur in a strictly stationary time-series depends only on the number of values in the time-series, regardless of distribution. This holds whether the events are record-breaking highs or lows and whether we count from past to present or present to past. However, these symmetries are broken in distinct ways by trends in the mean and variance. We define indices that capture this information and use them to detect weak trends from multiple time-series. Here, we use these methods to answer the following questions: (1) Is there a variability trend among globally distributed surface temperature time-series? We find a significant decreasing variability over the past century for the Global Historical Climatology Network (GHCN). This corresponds to about a 10% change in the standard deviation of inter-annual monthly mean temperature distributions. (2) How are record-breaking high and low surface temperatures in the United States affected by time period? We investigate the United States Historical Climatology Network (USHCN) and find that the ratio of record-breaking highs to lows in 2006 increases as the time-series extend further into the past. When we consider the ratio as it evolves with respect to a fixed start year, we find it is strongly correlated with the ensemble mean. We also compare the ratios for USHCN and GHCN (minus USHCN stations). We find the ratios grow monotonically in the GHCN data set, but not in the USHCN data set. (3) Do we detect either mean or variance trends in annual precipitation within the United States? We find that the total annual and monthly precipitation in the United States (USHCN) has increased over the past century. Evidence for a trend in variance is inconclusive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To assess whether palliative primary tumor resection in colorectal cancer patients with incurable stage IV disease is associated with improved survival. BACKGROUND There is a heated debate regarding whether or not an asymptomatic primary tumor should be removed in patients with incurable stage IV colorectal disease. METHODS Stage IV colorectal cancer patients were identified in the Surveillance, Epidemiology, and End Results database between 1998 and 2009. Patients undergoing surgery to metastatic sites were excluded. Overall survival and cancer-specific survival were compared between patients with and without palliative primary tumor resection using risk-adjusted Cox proportional hazard regression models and stratified propensity score methods. RESULTS Overall, 37,793 stage IV colorectal cancer patients were identified. Of those, 23,004 (60.9%) underwent palliative primary tumor resection. The rate of patients undergoing palliative primary cancer resection decreased from 68.4% in 1998 to 50.7% in 2009 (P < 0.001). In Cox regression analysis after propensity score matching primary cancer resection was associated with a significantly improved overall survival [hazard ratio (HR) of death = 0.40, 95% confidence interval (CI) = 0.39-0.42, P < 0.001] and cancer-specific survival (HR of death = 0.39, 95% CI = 0.38-0.40, P < 0.001). The benefit of palliative primary cancer resection persisted during the time period 1998 to 2009 with HRs equal to or less than 0.47 for both overall and cancer-specific survival. CONCLUSIONS On the basis of this population-based cohort of stage IV colorectal cancer patients, palliative primary tumor resection was associated with improved overall and cancer-specific survival. Therefore, the dogma that an asymptomatic primary tumor never should be resected in patients with unresectable colorectal cancer metastases must be questioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.