992 resultados para TIME-REVERSAL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time reversal active sensing using Lamb waves is investigated for health monitoring of a metallic structure. Experiments were conducted on an aluminum plate to study the time reversal behavior of A(0) and S-0 Lamb wave modes under narrow band and broad band pulse excitation. Damage in the form of a notch was introduced in the plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. Time-frequency analysis of the time reversed signal was carried out to extract the damage information. A measure of damage based on wavelet transform was derived to quantify the hidden damage information in the time reversed signal. It has been shown that time reversal can be used to achieve temporal recompression of Lamb waves under broadband signal excitation. Further, the broad band excitation can also improve the resolution of the technique in detecting closely located defects. This is demonstrated by picking up the reflection of waves from the edge of the plate, from a defect close to the edge of the plate and from defects located near to each other. This study shows the effectiveness of Lamb wave time reversal for temporal recompression of dispersive Lamb waves for damage detection in health monitoring applications. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comprehensive study of two of the most experimentally relevant extensions of Kitaev's spinless model of a one-dimensional p-wave superconductor: those involving (i) longer-range hopping and superconductivity and (ii) inhomogeneous potentials. We commence with a pedagogical review of the spinless model and, as a means of characterizing topological phases exhibited by the systems studied here, we introduce bulk topological invariants as well as those derived from an explicit consideration of boundary modes. In time-reversal symmetric systems, we find that the longer range hopping leads to topological phases characterized by multiple Majorana modes. In particular, we investigate a spin model that respects a duality and maps to a fermionic model with multiple Majorana modes; we highlight the connection between these topological phases and the broken symmetry phases in the original spin model. In the presence of time-reversal symmetry breaking terms, we show that the topological phase diagram is characterized by an extended gapless regime. For the case of inhomogeneous potentials, we explore phase diagrams of periodic, quasiperiodic, and disordered systems. We present a detailed mapping between normal state localization properties of such systems and the topological phases of the corresponding superconducting systems. This powerful tool allows us to leverage the analyses of Hofstadter's butterfly and the vast literature on Anderson localization to the question of Majorana modes in superconducting quasiperiodic and disordered systems, respectively. We briefly touch upon the synergistic effects that can be expected in cases where long-range hopping and disorder are both present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si: P and Ge: P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation describes a model for acoustic propagation in inhomogeneous flu- ids, and explores the focusing by arrays onto targets under various conditions. The work explores the use of arrays, in particular the time reversal array, for underwater and biomedical applications. Aspects of propagation and phasing which can lead to reduced focusing effectiveness are described. An acoustic wave equation was derived for the propagation of finite-amplitude waves in lossy time-varying inhomogeneous fluid media. The equation was solved numerically in both Cartesian and cylindrical geometries using the finite-difference time-domain (FDTD) method. It was found that time reversal arrays are sensitive to several debilitating factors. Focusing ability was determined to be adequate in the presence of temporal jitter in the time reversed signal only up to about one-sixth of a period. Thermoviscous absorption also had a debilitating effect on focal pressure for both linear and nonlinear propagation. It was also found that nonlinearity leads to degradation of focal pressure through amplification of the received signal at the array, and enhanced absorption in the shocked waveforms. This dissertation also examined the heating effects of focused ultrasound in a tissue-like medium. The application considered is therapeutic heating for hyperther- mia. The acoustic model and a thermal model for tissue were coupled to solve for transient and steady temperature profiles in tissue-like media. The Pennes bioheat equation was solved using the FDTD method to calculate the temperature fields in tissue-like media from focused acoustic sources. It was found that the temperature-dependence of the medium's background prop- erties can play an important role in the temperature predictions. Finite-amplitude effects contributed excess heat when source conditions were provided for nonlinear ef- fects to manifest themselves. The effect of medium heterogeneity was also found to be important in redistributing the acoustic and temperature fields, creating regions with hotter and colder temperatures than the mean by local scattering and lensing action. These temperature excursions from the mean were found to increase monotonically with increasing contrast in the medium's properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulse design is investigated for time-reversal (TR) imaging as applied to ultrawideband (UWB) breast cancer detection. Earlier it has been shown that a suitably-designed UWB pulse may help to improve imaging performance for a single-tumor breast phantom with predetermined lesion properties. The current work considers the following more general and practical situations: presence of multiple malignancies with unknown tumor size and dielectric properties. Four pulse selection criteria are proposed with each focusing on one of the following aspects: eliminating signal clutter generated by tissue inhomogeneities, canceling mutual interference among tumors, improving image resolution, and suppressing artifacts created by sidelobe of the target response. By applying the proposed criteria, the shape parameters of UWB waveforms with desirable characteristics are identified through search of all the possible pulses. Simulation example using a numerical breast phantom, comprised of two tumors and structured clutter distribution, demonstrates the effectiveness of the proposed approach. Specifically, a tradeoff between the image resolution and signal-to-clutter contrast (SCC) is observed in terms of selection of the excitation waveforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the technique of time reversal (TR), a new method for low dielectric contrast target detection in clutter by adding dispersive delay lines (DDLs) to each element of the TR mirror (TRM) is proposed. When compared with a conventional TR system, the proposed method improves refocusing to a target by reducing the impact of other scatterers in the environment. The proposed method makes it unnecessary to estimate the position of the target and removes the need for subsequent subtraction as traditionally required. Theoretical and numerical simulated results demonstrate the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the technique of time reversal (TR), through adding dispersive delay lines to each element of a TR mirror, a method for low contrast tumour detection is proposed. When compared with a conventional detection method, the proposed method improves refocusing onto a low dielectric contrast tumour. The method does not require an accurate estimate of the position of the tumour. The theoretical basis for the approach is given and numerical simulated results demonstrate the capability of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that there is a four-parameter family of point interactions in one-dimensional quantum mechanics. We point out that, as far as physics is concerned, it is sufficient to use three of the four parameters. The fourth parameter is redundant. The apparent violation of time-reversal invariance in the presence of the fourth parameter is an artifact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is pointed out that erroneous Bardeen-Cooper-Schrieffer model equations have been used by Haranath Ghosh in his recent treatment of time-reversal symmetry-breaking superconductivity. Consequently, his numerical results are misleading, and his conclusions are not to the point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We elucidate the close relationship between spontaneous time-reversal symmetry breaking and the physics of excitonic instabilities in strongly correlated multiband systems. The underlying mechanism responsible for the spontaneous breaking of time-reversal symmetry in a many-body system is closely related to the Cooper-like pairing instability of interband particle-hole pairs involving higher-order symmetries. Studies of such pairing instabilities have, however, mainly focused on the mean-field aspects of the virtual exciton condensate, which ignores the presence of the underlying collective Fermi-liquid excitations. We show that this relationship can be exploited to systematically derive the coupling of the condensate order parameter to the intraband Fermi-liquid particle-hole excitations. Surprisingly, we find that the static susceptibility is negative in the ordered phase when the coupling to the Fermi-liquid collective excitations are included, suggesting that a uniform condensate of virtual excitons, with or without time-reversal breaking, is an unstable phase at T = 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase transitions involving spontaneous time-reversal symmetry breaking are studied on the honeycomb lattice at finite hole doping with next-nearest-neighbor repulsion. We derive an exact expression for the mean-field equation of state in closed form, valid at temperatures much less than the Fermi energy. Contrary to standard expectations, we find that thermally induced intraband particle-hole excitations can create and stabilize a uniform metallic phase with broken time-reversal symmetry as the temperature is raised in a region where the ground state is a trivial metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a group theoretical analysis of several classes of organic superconductor. We predict that highly frustrated organic superconductors, such as K-(ET)(2)Cu-2(CN)(3) (where ET is BEDT-TTF, bis(ethylenedithio) tetrathiafulvalene) and beta'-[Pd(dmit)(2)](2)X, undergo two superconducting phase transitions, the first from the normal state to a d-wave superconductor and the second to a d + id state. We show that the monoclinic distortion of K-(ET)(2)Cu(NCS)(2) means that the symmetry of its superconducting order parameter is different from that of orthorhombic-K-(ET)(2)Cu[N(CN)(2)] Br. We propose that beta'' and theta phase organic superconductors have d(xy) + s order parameters.