915 resultados para TIME FTIR SPECTROSCOPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terahertz time-domain spectroscopy has been carried out on a metallic film of polypyrrole (PPy doped by PF6). The sample was exposed to air to investigate how the conductivity of the film varies as a function of time. The absorption and dispersion of the film decrease during initial days, and then tend to saturate. The conductivity of unaged sample follows the Drude model, and upon aging the data fit to the localization-modified Drude model. The fitting parameters show that the number of charge carriers decreases during the aging process. The initial rapid decrease in conductivity suggests that some of the delocalized carriers are localized due to aging. (C) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terahertz time domain spectroscopy has been used to study low frequency confined acoustic phonons of silver nanoparticles embedded in poly (vinyl alcohol) matrix in the spectral range of 0.1-2.5 THz. The real and imaginary parts of the dielectric function show two bands at 0.60 and 2.12 THz attributed to the spheroidal and toroidal modes of silver nanoparticles, thus demonstrating the usefulness of terahertz time domain spectroscopy as a complementary technique to Raman spectroscopy in characterizing the nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456372]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured the frequency-dependent real index of refraction and extinction coefficient (and hence the complex dielectric function) of a free-standing double-walled carbon nanotube film of thickness 200 nm by using terahertz time domain spectroscopy in the frequency range 0.1 to 2.5 THz. The real index of refraction and extinction coefficient have very high values of approximately 52 and 35, respectively, at 0.1 THz, which decrease at higher frequencies. Two low-frequency phonon modes of the carbon nanotubes at 0.45 and 0.75 THz were clearly observed for the first time in the real and imaginary parts of the complex dielectric function along with a broad resonance centred at around 1.45 THz, the latter being similar to that in single-walled carbon nanotubes assigned to electronic excitations. Our experiments bring out a possible application of double-walled carbon nanotube films as a neutral density filter in the THz range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absorption and index of refraction of polypyrrole (PPy) and poly-3-methylthiophene (PMeT), from low frequencies up to 4 THz, have been measured by tera-Herz (THz) time-domain spectroscopy. The complex conductance was obtained over this range of frequency. Highly conducting metallic samples follow the Drude model, whereas less conducting ones fit the localization-modified Drude model. The carrier scattering time and mobility in conducting polymers can be directly determined from these measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a high peak power femtosecond modelocked VECSEL and its application as a drive laser for an all semiconductor terahertz time domain spectrometer. The VECSEL produced near-transform-limited 335 fs sech2 pulses at a fundamental repetition rate of 1 GHz, a centre wavelength of 999 nm and an average output power of 120 mW. We report on the effect that this high peak power and short pulse duration has on our generated THz signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time-domain spectrometer for use in the terahertz (THz) spectral range was designed and constructed. Due to there being few existing methods of generating and detecting THz radiation, the spectrometer is expected to have vast applications to solid, liquid, and gas phase samples. In particular, knowledge of complex organic chemistry and chemical abundances in the interstellar medium (ISM) can be obtained when compared to astronomical data. The THz spectral region is of particular interest due to reduced line density when compared to the millimeter wave spectrum, the existence of high resolution observatories, and potentially strong transitions resulting from the lowest-lying vibrational modes of large molecules.

The heart of the THz time-domain spectrometer (THz-TDS) is the ultrafast laser. Due to the femtosecond duration of ultrafast laser pulses and an energy-time uncertainty relationship, the pulses typically have a several-THz bandwidth. By various means of optical rectification, the optical pulse carrier envelope shape, i.e. intensity-time profile, can be transferred to the phase of the resulting THz pulse. As a consequence, optical pump-THz probe spectroscopy is readily achieved, as was demonstrated in studies of dye-sensitized TiO2, as discussed in chapter 4. Detection of the terahertz radiation is commonly based on electro-optic sampling and provides full phase information. This allows for accurate determination of both the real and imaginary index of refraction, the so-called optical constants, without additional analysis. A suite of amino acids and sugars, all of which have been found in meteorites, were studied in crystalline form embedded in a polyethylene matrix. As the temperature was varied between 10 and 310 K, various strong vibrational modes were found to shift in spectral intensity and frequency. Such modes can be attributed to intramolecular, intermolecular, or phonon modes, or to some combination of the three.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terahertz time-domain spectroscopy measurements were made for vertically aligned multi-walled carbon nanotube (VACNT) films. We obtained the frequency dependent complex permittivity and conductivity (on the assumption that permeability μ = 1) of several samples exhibiting Drude behaviour for lossy metals. The obtained material properties of VACNT films provide information for potential microwave and terahertz applications. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EPSRC, the European Community IST FP6 Integrated, etc