926 resultados para TIGHT GAS. Low permeability. Hydraulic fracturing. Reservoir modeling. Numerical simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing of energetic consumption in the worldwile, conventional reservoirs, known by their easy exploration and exploitation, are not being enough to satisfy this demand, what has made necessary exploring unconventional reservoirs. This kind of exploration demands developing more advanced technologies to make possible to exploit those hydrocarbons. Tight gas is an example of this kind of unconventional reservoir. It refers to sandstone fields with low porosity, around 8%, and permeabilities between 0.1 and 0.0001 mD, which accumulates considerable amounts of natural gas. That natural gas can only be extracted by applying hydraulic fracturing, aiming at stimulating the reservoir, by creating a preferential way through the reservoir to the well, changing and making easier the flow of fluids, thus increasing the productivity of those reservoirs. Therefore, the objective of this thesis is analyzing the recovery factor of a reservoir by applying hydraulic fracturing. All the studies were performed through simulations using the IMEX software, by CMG (Computer Modelling Group), in it 2012.10 version

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing of energetic consumption in the worldwile, conventional reservoirs, known by their easy exploration and exploitation, are not being enough to satisfy this demand, what has made necessary exploring unconventional reservoirs. This kind of exploration demands developing more advanced technologies to make possible to exploit those hydrocarbons. Tight gas is an example of this kind of unconventional reservoir. It refers to sandstone fields with low porosity, around 8%, and permeabilities between 0.1 and 0.0001 mD, which accumulates considerable amounts of natural gas. That natural gas can only be extracted by applying hydraulic fracturing, aiming at stimulating the reservoir, by creating a preferential way through the reservoir to the well, changing and making easier the flow of fluids, thus increasing the productivity of those reservoirs. Therefore, the objective of this thesis is analyzing the recovery factor of a reservoir by applying hydraulic fracturing. All the studies were performed through simulations using the IMEX software, by CMG (Computer Modelling Group), in it 2012.10 version

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil vapor extraction (SVE)systems can be used to remediate enviornmental sites that have been contaminated with petroleum products. However, SVE systems rely on pore space in soils to draw the vapors through the soil, creating a vacuum. Therefore, SVE systems are not as effective when used in low permeability soils. This study aims to determine whether SVE systems can be used on low permeability soils in conjunction with companion technologies. The results indicate that SVE systems can be utilized in low permeability soils if used in conjunction with companion technologies that increase soil permeability and cantaminant volatilization. The promising companion technology is six-phase soil heating, based on contamination removal rate and cost estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scour around hydraulic structures is a critical problem in hydraulic engineering. Under prediction of scour depth may lead to costly failures of the structure, while over prediction might result in unnecessary costs. Unfortunately, up-to-date empirical scour prediction formulas are based on laboratory experiments that are not always able to reproduce field conditions due to complicated geometry of rivers and temporal and spatial scales of a physical model. However, computational fluid dynamics (CFD) tools can perform using real field dimensions and operating conditions to predict sediment scour around hydraulic structures. In Korea, after completing the Four Major Rivers Restoration Project, several new weirs have been built across Han, Nakdong, Geum and Yeongsan Rivers. Consequently, sediment deposition and bed erosion around such structures have became a major issue in these four rivers. In this study, an application of an open source CFD software package, the TELEMAC-MASCARET, to simulate sediment transport and bed morphology around Gangjeong weir, which is the largest multipurpose weir built on Nakdong River. A real bathymetry of the river and a geometry of the weir have been implemented into the numerical model. The numerical simulation is carried out with a real hydrograph at the upstream boundary. The bedmorphology obtained from the numerical results has been validated against field observation data, and a maximum of simulated scour depth is compared with the results obtained by empirical formulas of Hoffmans. Agreement between numerical computations, observed data and empirical formulas is judged to be satisfactory on all major comparisons. The outcome of this study does not only point out the locations where deposition and erosion might take place depending on the weir gate operation, but also analyzes the mechanism of formation and evolution of scour holes after the weir gates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N2 and CO2 adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (<2000 Å), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N2 and CO2 adsorption, is significantly less than surface area estimates from SANS/USANS, which is due in part to limited accessibility of the gases to all pores. The similarity between N2 and CO2-accessible surface area suggests an absence of microporosity in these samples, which is in agreement with SANS analysis. A core gamma ray profile run on the same core from which the core plug samples were taken correlates to profile permeability measurements run on the slabbed core. This correlation is related to clay content, which possibly controls the percentage of open porosity. Continued study of these effects will prove useful in log-core calibration efforts for tight gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Yaoyingtai Block is located within the northeastern Changling Depression of southern Songliao Basin, where the reservoir sandstones are petrophysically characterized by very low permeability, which results in the low success probability of artificial fracturing, and the low oil yield by water injection in the course of oil production. In order to improve the situations as stated above, this research aims to work out an integral fracturing technology and strategy applicable to the low permeable reservoirs in Yaoyingtai Block. Under the guidance of geological theory, reservoir engineering and technology, the subsurface occurrences of natural and hydraulic fractures in the reservoirs are expected to be delineated, and appropriate fracturing fluids and proppants are to be optimized, based on the data of drilling, well logging, laboratory and field experiments, and geological data. These approaches lay the basis of the integral fracturing technology suitable for the low permeable reservoir in the study area. Based on core sample test, in-situ stress analysis of well logging, and forward and inversion stress field modeling, as well as fluid dynamic analysis, the maximum in-situ stress field is unraveled to be extended nearly along the E-W direction (clustering along N85-135°E) as is demonstrated by the E-W trending tensional fractures. Hydraulic fractures are distributed approximately along the E-W direction as well. Faulting activities could have exerted obvious influences on the distribution of fractures, which were preferentially developed along fault zones. Based on reservoir sensitivity analysis, integrated with studies on rock mechanics, in-situ stress, natural fracture distribution and production in injection-production pilot area, the influences of primary fractures on fracturing operation are analyzed, and a diagnostic technology for primary fractures during depressurization is accordingly developed. An appropriate fracturing fluid (hydroxypropyl guar gum) and a proppant (Yixing ceramsite, with a moderate-density, 0.45-0.9mm in size) applicable to Qingshankou Formation reservoir are worked out through extensive optimization analysis. The fracturing fluid can decrease the damage to the oil reservoir, and the friction in fracturing operation, improving the effect of fracturing operation. Some problems, such as sand-out at early stage and low success rate of fracturing operations, have been effectively solved, through pre-fracturing formation evaluation, “suspension plug” fracturing, real-time monitoring and limited-flow fracturing. Through analysis of fracture-bearing tight reservoir with variable densities and dynamic analysis of influences of well patterns on fracturing by using numerical simulation, a fracturing operation scheme for the Qingshankou Formation reservoir is proposed here as being better to compress the short factures, rather than to compress the long fractures during hydraulic fracturing. It is suggested to adopt the 450m×150m inverted 9-spot well pattern in a diamond shape with wells placed parallel to fractures and a half fracture length of 60-75m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH(4) L(-1) (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L(-1) (P < 0.05; n = 34). Average δ(13)C-CH(4) values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (-37 ± 7‰ and -54 ± 11‰, respectively; P < 0.0001). These δ(13)C-CH(4) data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ(2)H-CH(4) values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/thermogenic methane source. We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids. We conclude that greater stewardship, data, and-possibly-regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydraulic fracturing of the Marcellus Formation creates a byproduct known as frac water. Five frac water samples were collected in Bradford County, PA. Inorganic chemical analysis, field parameters analysis, alkalinity titrations, total dissolved solids(TDS), total suspended solids (TSS), biological oxygen demand (BOD), and chemical oxygen demand (COD) were conducted on each sample to characterize frac water. A database of frac water chemistry results from across the state of Pennsylvania from multiple sources was compiled in order to provide the public and research communitywith an accurate characterization of frac water. Four geochemical models were created to model the reactions between frac water and the Marcellus Formation, Purcell Limestone, and the oil field brines presumed present in the formations. The average concentrations of chloride and TDS in the five frac water samples were 1.1 �± 0.5 x 105 mg/L (5.5X average seawater) and 140,000 mg/L (4X average seawater). BOD values for frac water immediately upon flow back were over 10X greater than the BOD of typical wastewater, but decreased into the range of typical wastewater after a short period of time. The COD of frac water decreases dramatically with an increase in elapsed time from flow back, but remain considerably higher than typicalwastewater. Different alkalinity calculation methods produced a range of alkalinity values for frac water: this result is most likely due to high concentrations of aliphatic acid anions present in the samples. Laboratory analyses indicate that the frac watercomposition is quite variable depending on the companies from which the water was collected, the geology of the local area, and number of fracturing jobs in which the frac water was used, but will require more treatment than typical wastewater regardless of theprecise composition of each sample. The geochemical models created suggest that the presence of organic complexes in an oil field brine and Marcellus Formation aid in the dissolution of ions such as bariumand strontium into the solution. Although equilibration reactions between the Marcellus Formation and the slickwater account for some of the final frac water composition, the predominant control of frac water composition appears to be the ratio of the mixture between the oil field brine and slickwater. The high concentration of barium in the frac water is likely due to the abundance of barite nodules in the Purcell Limestone, and the lack of sulfate in the frac water samples is due to the reducing, anoxic conditions in the earth's subsurface that allow for the degassing of H2S(g).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of the Marcellus Shale gas play in Pennsylvania and the northeastern United States has resulted in significant amounts of water and wastes transported by truck over roadways. This study used geographic information systems (GIS) to quantify truck travel distances via both the preferred routes (minimum distance while also favoring higher-order roads) as well as, where available, the likely actual distances for freshwater and waste transport between pertinent locations (e. g., gas wells, treatment facilities, freshwater sources). Results show that truck travel distances in the Susquehanna River Basin are greater than those used in prior life-cycle assessments of tight shale gas. When compared to likely actual transport distances, if policies were instituted to constrain truck travel to the closest destination and higher-order roads, transport mileage reductions of 40-80% could be realized. Using reasonable assumptions of current practices, greenhouse gas (GHG) emissions associated with water and waste hauling were calculated to be 70-157 MT CO2 eq per gas well. Furthermore, empty so-called backhaul trips, such as to freshwater withdrawal sites or returning from deep well injection sites, were found to increase emissions by an additional 30%, underscoring the importance of including return trips in the analysis. The results should inform future life-cycle assessments of tight shale gases in managed watersheds and help local and regional governments plan for impacts of transportation on local infrastructure. (C) 2013 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crossroads of urban development and improved technology allowing oil and gas development in new areas can result in contentious community issues. The debate over one of the improved technologies – i.e., hydraulic fracturing – can be highly emotional. Consequently, industry must address community issues, earning trust and therefore a “social license to operate.” This paper provides fundamental knowledge of the social license to operate concept, validates its application to the oil and gas industry, particularly with respect to shale gas development, discusses the current status of social license in the unconventional development sphere, analyzes current ongoing efforts for shale gas developers to monitor and establish a social license, and identifies potential new methods of encouraging, establishing, and monitoring a social license to operate. The paper also proposes a new institutional framework in which to promote the social license to operate, “The Center for Social License to Operate in the Oil & Gas Industry.”

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon capture and storage (CCS) can contribute significantly to addressing the global greenhouse gas (GHG) emissions problem. Despite widespread political support, CCS remains unknown to the general public. Public perception researchers have found that, when asked, the public is relatively unfamiliar with CCS yet many individuals voice specific safety concerns regarding the technology. We believe this leads many stakeholders conflate CCS with the better-known and more visible technology hydraulic fracturing (fracking). We support this with content analysis of media coverage, web analytics, and public lobbying records. Furthermore, we present results from a survey of United States residents. This first-of-its-kind survey assessed participants’ knowledge, opinions and support of CCS and fracking technologies. The survey showed that participants had more knowledge of fracking than CCS, and that knowledge of fracking made participants less willing to support CCS projects. Additionally, it showed that participants viewed the two technologies as having similar risks and similar risk intensities. In the CCS stakeholder literature, judgment and decision-making (JDM) frameworks are noticeably absent, and public perception is not discussed using any cognitive biases as a way of understanding or explaining irrational decisions, yet these survey results show evidence of both anchoring bias and the ambiguity effect. Public acceptance of CCS is essential for a national low-carbon future plan. In conclusion, we propose changes in communications and incentives as programs to increase support of CCS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new mathematical model for the transient flow in the composite low permeability is established. It is solved by FEM with different boundary conditions such as infinite, circular closed and constant pressure boundary conditions. The typical curves for transient wellbore pressure have been presented. It is shown that the pressure and pressure derivative curves with composite start-up pressure gradients have different slopes which are depended on the start-up pressure gradients and the mobility radios in different regions. The boundary effects are the same as the normal reservoirs without start-up pressure gradients. The study provides a new tool to analyze the transient pressure test data in the low permeability reservoir.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although natural gas has been praised as a clean and abundant energy source, the varying impacts and uncertainties surrounding the process of extracting natural gas from unconventional sources, known as horizontal high-volume hydraulic fracturing (HVHF) or “fracking,” have raised important concerns. The practice of HVHF is expanding so quickly that the full impacts are not yet known. This thesis project, using a grounded theory methodological approach, explores the risks and benefits associated with HVHF as recognized by the residents of two Michigan counties, one that currently produces natural gas by HVHF (Crawford County) and one that does not (Barry County). Through an analysis of media content related to HVHF in each case study site and interviews with stakeholders in both counties, this study examines perceptions of risks and benefits by comparing two communities that differ in their level of experience with HVHF operations, contributing to our understanding of how perceptions of risks and benefits are shaped by natural gas development. The comparative analysis of the case study counties revealed similarities and differences between the case study counties. Overall, Barry County residents identified fewer benefits and more risks, and had stronger negative perceptions than Crawford County residents. This study contributes to the social science literature by developing a richer theoretical frame for understanding perceptions of HVHF and also shares recommendations for industry, organizations, regulators, and government leaders interested in effectively communicating with community stakeholders about the benefits and risks of HVHF.