1000 resultados para TIGER2 method


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here we present an improved implementation of the TIGER2 Replica Exchange Molecular Dynamics (REMD) method, using the replica exchange Application Programming Interface (API) found in contemporary versions of the NAMD Molecular Dynamics Package. The implementation takes the form of a TCL script which is used in conjunction with the standard configuration file. This implementation is validated against a previous TIGER2 implementation, as well as data reported for the original TIGER2 simulations. Our implementation is compatible with a range of architectures; crucially it enables the use of this wrapper with the BlueGene/Q architecture, in addition to the x86 architecture. Program summary: Program title: TIGER2-NAMD. Catalogue identifier: AEWC_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 34151. No. of bytes in distributed program, including test data, etc.: 424217. Distribution format: tar.gz. Programming language: Tcl 8.5. Computer: x86 Clusters, BlueGene/Q, Workstations. Operating system: Linux, IBM Compute Node Kernel. Has the code been vectorised or parallelised?: Yes. MPI Parallelism. Classification: 3. External routines: NAMD 2.9 (http://www.ks.uiuc.edu/Research/namd/). Nature of problem: Replica Exchange Molecular Dynamics. Solution method: Each replica runs through multiple cycles of heating and cooling with exchanges between them being attempted. Running time: Typically 30 mins, up to an hour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.