1000 resultados para THIRRING MODELS
Resumo:
We consider a real Lagrangian off-critical submodel describing the soliton sector of the so-called conformal affine sl(3)((1)) Toda model coupled to matter fields. The theory is treated as a constrained system in the context of Faddeev-Jackiw and the symplectic schemes. We exhibit the parent Lagrangian nature of the model from which generalizations of the sine-Gordon (GSG) or the massive Thirring (GMT) models are derivable. The dual description of the model is further emphasized by providing the relationships between bilinears of GMT spinors and relevant expressions of the GSG fields. In this way we exhibit the strong/weak coupling phases and the (generalized) soliton/particle correspondences of the model. The sl(n)((1)) case is also outlined. (C) 2002 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we discuss the Lax formulation of the Grassmannian and Bosonic Thirring models in the presence of jump defects. For the Grassmannian case, the defect is described by Backlund transformation which is responsible for preserving the integrability of the model. We then propose an extension of the Backlund transformation for the Bosonic Thirring model which is verified by some Backlund transitions like vacuum-one soliton, one soliton-one soliton, one soliton-two solitons and two solitons-two solitons. The Lax formulation within the space split by the defect leads to the integrability of Bosonic Thirring model with jump defects.
Resumo:
We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Bullough-Dodd model is an important two-dimensional integrable field theory which finds applications in physics and geometry. We consider a conformally invariant extension of it, and study its integrability properties using a zero curvature condition based on the twisted Kac-Moody algebra A(2)((2)). The one- and two-soliton solutions as well as the breathers are constructed explicitly. We also consider integrable extensions of the Bullough-Dodd model by the introduction of spinor (matter) fields. The resulting theories are conformally invariant and present local internal symmetries. All the one-soliton solutions, for two examples of those models, are constructed using a hybrid of the dressing and Hirota methods. One model is of particular interest because it presents a confinement mechanism for a given conserved charge inside the solitons. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Some years ago, it was shown how fermion self-interacting terms of the Thirring-type impact the usual structure of massless two-dimensional gauge theories [1]. In that work only the cases of pure vector and pure chiral gauge couplings have been considered and the corresponding Thirring term was also pure vector and pure chiral respectively, such that the vector ( or chiral) Schwinger model should not lose its chirality structure due to the addition of the quartic interaction term. Here we extend this analysis to a generalized vector and axial coupling both for the gauge interaction and the quartic fermionic interactions. The idea is to perform quantization without losing the original structure of the gauge coupling. In order to do that we make use of an arbitrariness in the definition of the Thirring-like interaction.
Resumo:
A systematic construction for an action describing a class of supersymmetric integrable models as well as for pure fermionic theories is discussed in terms of the gauged WZNW model associated to half integer graded affine Kac-Moody algebras. Explicit examples of the N = 1. 2 super-sinh(sine)-Gordon models are discussed in detail. Pure fermionic theories arises for cosets sl(p, 1)/sl(p) circle times u(1) when a maximal kernel condition is fulfilled. The integrability condition for such models is discussed and it is shown that the simplest example when p = 2 (cads to the constrained Bukhvostov-Lipatov, Thirring, scalar massive and pseudo-scalar massless Gross-Neveu models. (C) 2009 Published by Elsevier B.V.
Resumo:
Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.
Resumo:
The purpose of our work is to extend the formulation of classical affine Toda Models in the presence of jump defects to pure fermionic Thirring model. As a first attempt we construct the Lagrangian of the Grassmanian Thirring model with jump defect (of Backlund type) and present its conserved modified momentum and energy expressions giving a first indication of its integra-bility. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
Pós-graduação em Física - IFT
Resumo:
We review the status of integrable models from the point of view of their dynamics and integrability conditions. A few integrable models are discussed in detail. We comment on the use it is made of them in string theory. We also discuss the SO(6) symmetric Hamiltonian with SO(6) boundary. This work is especially prepared for the 70th anniversaries of Andr, Swieca (in memoriam) and Roland Koberle.