985 resultados para THERMOSTIMULATED LUMINESCENCE
Resumo:
This study investigates the variability in response of optically stimulated luminescence dosimeters (OSLDs). Examining the source of sensitivity variations in these dosimeters allows for a more comprehensive understanding of the Landauer nanoDots and their potential for current and future applications. In this work, OSLDs were scanned with a MicroCT scanner to determine potential sources for the variation in relative sensitivity across a selection of Landauer nanoDot dosimeters. Specifically, the correlation between a dosimeters relative sensitivity and the loading density of Al2O3:C powder was determined. When extrapolating the sensitive volume's radiodensity from the CT data, it was shown that there is a non-uniform distribution in crystal growth. It was calculated that a 0.05% change in the nominal volume of the chip produces a 1% change in the overall response. Additionally, the ‘true’ volume of an OSLD's sensitive material is, on average, 18% less than that which has been reported in literature, mainly due to the presence of air cavities in the material's structure. This work demonstrated that the amount of sensitive material is approximately linked to the total correction factor.
Resumo:
Introduction This study investigates uncertainties pertaining to the use of optically stimulated luminescence dosimeters (OSLDs) in radiotherapy dosimetry. The sensitivity of the luminescent material is related to the density of recombination centres [1], which is in the range of 1015–1016 cm-3. Because of this non-uniform distribution of traps in crystal growth the sensitivity varies substantially within a batch of dosimeters. However, a quantitative understanding of the relationship between the response of an OSLD and its sensitive volume has not yet been investigated or reported in literature. Methods In this work, OSLDs are scanned with a MicroCT scanner to determine potential sources for the variation in relative sensitivity across a selection of Landauer nanoDot dosimeters. Specifically, the correlation between a dosimeters relative sensitivity and the loading density of Al2O3:C powder was determined. Results When extrapolating the sensitive volume’s radiodensity from the CT data, it was shown that there is a non-uniform distribution incrystal growth as illustrated in Fig. 1. A plot of voxel count versus the element-specific correction factor is shown in Fig. 2 where each point represents a single OSLD. A line was fitted which has an R2-value of 0.69 and a P-value of 8.21 9 10-19. This data shows that the response of a dosimeter decreases proportionally with sensitive volume. Extrapolating from this data, a quantitative relationship between response and sensitive volume was roughly determined for this batch of dosimeters. A change in volume of 1.176 9 10-5 cm3 corresponds to a 1 % change in response. In other words, a 0.05 % change in the nominal volume of the chip would result in a 1 % change in response. Discussion and conclusions This work demonstrated that the amount of sensitive material is approximately linked to the total correction factor. Furthermore, the ‘true’ volume of an OSLD’s sensitive material is, on average, 17.90 % less than that which has been reported in literature, mainly due to the presence of air cavities in the material’s structure. Finally, the potential effects of the inaccuracy of Al2O3:C deposition increases with decreasing chip size. If a luminescent dosimeter were manufactured with a smaller volume than currently employed using the same manufacturing protocol, the variation in response from chip to chip would more than likely exceed the current 5 % range.
Resumo:
Luminescence has been detected in cyclic tetrapeptide disulfides containing only nonaromatic residues. Excitation of the S-S- n-cr transition between 280 and 290 nm leads to.ernission in the region 300-340 nm. The position and intensity of the emission band depends on the stereochemistry of the peptide and polarity of the solvent. Quantum yields ranging from 0.002 to 0.026 have been determined. Disulfide luminescence is quenched by oxygen and enhanced in solutions saturated with nitrogen. Contributions from disulfide linkages should be considered, when analysing the emission spectra of proteins, lacking tryptophan but having a high cystine content.
Resumo:
Spectral properties of Nd3+ and Dy3+ ions in different phosphate glasses were studied and several spectroscopic parameters were reported. Covalency of rare-earth-oxygen bond was studied in these phosphate glass matrices with the variation of modifier in host glass matrix Using Judd-Ofelt intensity parameters (Omega(2), Omega(4) and Omega(6)), radiative transition probabilities (A) and radiative lifetimes (tau(R)) of certain excited states of Nd3+ and Dy3+ ions are estimated in these glass matrices. From the magnitudes of branching ratios (beta(R)) and integrated absorption cross-sections (Sigma), certain transitions of both the ions are identified for laser excitation. From the emission spectra, peak stimulated emission cross-sections (sigma(P)) are evaluated for the emission transitions observed in all these phosphate glass matrices for both Nd3+ and Dy3+ ions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The photoluminescence (PL) properties of nano- and micro-crystalline Hg1-xCdxTe (x approximate to 0.8) grown by the solvothermal method have been studied over the temperature range 10-300 K. The emission spectra of the samples excited with 514.5 nm Ar+ laser consist of five prominent bands around 0.56, 0.60, 0.69, 0.78 and 0.92 eV. The entire PL band in this NIR region is attributed to the luminescence from defect centers. The features like temperature independent peak energy and quite sensitive PL intensity, which has a maximum around 50 K is illustrated by the configuration coordinate model. After 50 K, the luminescence shows a thermal quenching behavior that is usually exhibited by amorphous semiconductors, indicating that the defects are related to the compositional disorder. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Three new aluminoborates having the composition MAl3BO7, where M = Ca,Sr or Ba, have been prepared. X-ray diffraction data indicate that all the phases are monoclinic, with close structural similarity to the meta stable aluminate, SrAl4O7. These aluminoborates are good host lattices for Eu2+ luminescence. The emission spectra show multiple bands in the blue region, corresponding to two inequivalent sites in each case, with one of them having quantum efficiency greater-than or equivalent to 75%. In the case of SrAl3BO7:Eu2+, the d–f band emission dominates at 300 K whereas at 77 K both d–f band and f–f line emissions are observed. Efficient Eu2+→Mn2+ energy transfer is observed in MAl3BO7 leading to strong green emission of Mn2+in the tetrahedral sites.aluminoborates; europium
Resumo:
Wet chemical reaction of hydrated alumina gels, Al2O3.yH(2)O(80
Resumo:
Five coordination compounds Zn(mbmpbi)(2)Cl-2 (1), Zn(mbmpbi)(2)Br-2 (2), Cd(mbmpbi)(2)Cl-2 (3), Hg(mbmpbi)(2)Cl-2 (4) and Hg(mbmpbi)(2)Br-2 (5) were synthesized by the reaction of 1-(p-methoxybenzyl)-2-(p-methoxyphenyl)benzimidazole (mbmpbi) with the corresponding metal halides. The complexes have been characterized by elemental analysis, conductance measurements, FT-IR, H-1 NMR and photoluminescence spectral studies. The ligand mbmpbi exhibits the N-benzimidazole coordination. The structures of 3-5 have been determined by single crystal X-ray diffraction. These three complexes are isostructural, crystallizing in the monoclinic system. P2/n space group with a distorted tetrahedral geometry around the metal ion. Zn(II) and Cd(II) complexes show strong blue emission in solid state at room temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We report one-pot hydrothermal synthesis of nearly mono-disperse 3-mercaptopropionic acid capped water-soluble cadmium telluride (CdTe) quantum dots (QDs) using an air stable Te source. The optical and electrical characteristics were also studied here. It was shown that the hydrothermal synthesis could be tuned to synthesize nano structures of uniform size close to nanometers. The emissions of the CdTe QDs thus synthesized were in the range of 500-700 nm by varying the duration of synthesis. The full width at half maximum (FWHM) of the emission peaks is relatively narrow (40-90 nm), which indicates a nearly uniform distribution of QD size. The structural and optical properties of the QDs were characterized by transmission electron microscopy (TEM), photoluminescence (PL) and Ultraviolet-visible (UV-Vis) spectroscopy. The photoluminescence quenching of CdTe QDs in the presence of L-cysteine and DNA confirms its biocompatibility and its utility for biosensing applications. The room temperature current-voltage characteristics of QD film on ITO coated glass substrate show an electrically induced switching between states with high and low conductivities. The phenomenon is explained on the basis of charge confinement in quantum dots. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Chemically synthesized ``pro-sensitizers'' release the sensitizer in the presence of lipase or beta-glucosidase, triggering a significant luminescence response from a lanthanide based hydrogel.
Resumo:
Nano-ceramic phosphor CaSiO 3 doped with Pb and Mn was synthesized by the low temperature solution combustion method. The materials were characterized by Powder X-Ray Diffraction (XRD), Thermo-gravimetric and Differential Thermal Analysis (TG-DTA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The Electron Paramagnetic Resonance (EPR) spectrum of the investigated sample exhibits a broad resonance signal centered at g=1.994. The number of spins participating in resonance (N) and its paramagnetic susceptibility (�) have been evaluated. Photoluminescence of doped CaSiO 3 was investigated when excited by UV radiation of 256 nm. The phosphor exhibits an emission peak at 353 nm in the UV range due to Pb 2+. Further, a broad emission peak in the visible range 550-625 nm can be attributed to 4T 1� 6A 1 transition of Mn 2+ ions. The investigation reveals that doping perovskite nano-ceramics with transition metal ions leads to excellent phosphor materials for potential applications. © 2012 Elsevier Ltd and Techna Group S.r.l.