901 resultados para THERMOPHILIC PROTEINS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the mechanism of thermodynamic stability of an RNA structure has significant implications for the function and design of RNA. We investigated the equilibrium folding of a thermophilic ribozyme and its mesophilic homologue by using hydroxyl radical protection, small-angle x-ray scattering, and circular dichroism. Both RNAs require Mg2+ to fold to their native structures that are very similar. The stability is measured as a function of Mg2+ and urea concentrations at different temperatures. The enhanced stability of the thermophilic ribozyme primarily is derived from a tremendous increase in the amount of structure formed in the ultimate folding transition. This increase in structure formation and cooperativity arises because the penultimate and the ultimate folding transitions in the mesophilic ribozyme become linked into a single transition in the folding of the thermophilic ribozyme. Therefore, the starting point, or reference state, for the transition to the native, functional thermophilic ribozyme is significantly less structured. The shift in the reference state, and the resulting increase in folding cooperativity, is likely due to the stabilization of selected native interactions that only form in the ultimate transition. This mechanism of using a less structured intermediate and increased cooperativity to achieve higher functional stability for tertiary RNAs is fundamentally different from that commonly proposed to explain the increased stability of thermophilic proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Directed evolution techniques have been used to improve the thermal stability of the xylanase A from Bacillus subtilis (XylA). Two generations of random mutant libraries generated by error prone PCR coupled with a single generation of DNA shuffling produced a series of mutant proteins with increasing thermostability. The most Thermostable XylA variant from the third generation contained four mutations Q7H, G13R, S22P, and S179C that showed an increase in melting temperature of 20 degrees C. The thermodynamic properties Of a representative subset of nine XylA variants showing a range of thermostabilities were measured by thermal denaturation as monitored by the change in the far ultraviolet circular dichroism signal. Analysis of the data from these thermostable variants demonstrated a correlation between the decrease in the heat capacity change (Delta C(p)) with an increase in the midpoint of the transition temperature (T(m)) on transition from the native to the unfolded state. This result could not be interpreted within the context of the changes in accessible surface area of the protein on transition from the native to unfolded states. Since all the mutations are located at the surface of the protein, these results suggest that an explanation of the decrease in Delta C(p) on should include effects arising from the prot inlsolvent interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mycelial beta-glucosidase from the thermophilic mold Humicola insolens was purified and biochemically characterized. The enzyme showed carbohydrate content of 21% and apparent molecular mass of 94 kDa, as estimated by gel filtration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed a single polypeptide band of 55 kDa, suggesting that the native enzyme was a homodimer. Mass spectrometry analysis showed amino acid sequence similarity with a P-glucosidase from Humicola grisea var. thermoidea, with about 22% coverage. Optima of temperature and pH were 60 degrees C and 6.0-6.5, respectively. The enzyme was stable up to I h at 50 degrees C and showed a half-life of approximately 44 min at 55 degrees C. The beta-glucosidase hydrolyzed cellobiose, lactose, p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-xylopyranoside, p-nitrophenyl-beta-D-galactopyranoside, o-nitrophenyl-beta-D-galactopyranoside, and salicin. Kinetic studies showed that p-nitrophenyl-beta-D-fucopyranoside and cellobiose were the best enzyme substrates. Enzyme activity was stimulated by glucose or xylose at concentrations up to 400 mM, with maximal stimulatory effect (about 2-fold) around 40 mM. The high catalytic efficiency for the natural substrate, good thermal stability, strong stimulation by glucose or xylose, and tolerance to elevated concentrations of these monosaccharides qualify this enzyme for application in the hydrolysis of cellulosic materials. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Journal of Proteome Research (2006)5: 2720-2726

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi - Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 - using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extracellular (conidial) and an intracellular (mycelial) alkaline phosphatase from the thermophilic fungus Scytalidium thermophilum were purified by DEAE-cellulose and Concanavalin A-Sepharose chromatography. These enzymes showed allosteric behavior either in the presence or absence of MgCl2, BaCl2, CuCl2, and ZnCl2. All of these ions increased the maximal velocity of both enzymes. The molecular masses of the conidial and mycelial enzymes, estimated by gel filtration, were 162 and 132 kDa, respectively. Both proteins migrated on SDS-PAGE as a single polypeptide of 63 and 58.5 kDa, respectively, suggesting that these enzymes were dimers of identical subunits. The best substrate for the conidial and mycelial phosphatases was p-nitrophenylphosphate, but,beta -glycerophosphate and other phosphorylated compounds also served as substrates. The optimum pH for the conidial and mycelial alkaline phosphatases was 10.0 and 9.5 in the presence of AMPOL buffer, and their carbohydrate contents were about 54% and 63%, respectively. The optimum temperature was 70-75 degreesC for both activities. The enzymes were fully stable up to 1 h at 60 degreesC. These and other properties suggested that the alkaline phosphatases of S. thermophilum might be suitable for biotechnological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50°C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83–92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3-Isopropylmalate dehydrogenase (IPMDH, E.C. 1.1.1.85) from the thermophilic bacterium Thermus thermophilus HB8 is homologous to IPMDH from the mesophilic Escherichia coli, but has an approximately 17°C higher melting temperature. Its temperature optimum is 22–25°C higher than that of the E. coli enzyme; however, it is hardly active at room temperature. The increased conformational rigidity required to stabilize the thermophilic enzyme against heat denaturation might explain its different temperature-activity profile. Hydrogen/deuterium exchange studies were performed on this thermophilic-mesophilic enzyme pair to compare their conformational flexibilities. It was found that Th. thermophilus IPMDH is significantly more rigid at room temperature than E. coli IPMDH, whereas the enzymes have nearly identical flexibilities under their respective optimal working conditions, suggesting that evolutionary adaptation tends to maintain a “corresponding state” regarding conformational flexibility. These observations confirm that conformational fluctuations necessary for catalytic function are restricted at room temperature in the thermophilic enzyme, suggesting a close relationship between conformational flexibility and enzyme function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stability parameters for individual residues in Thermus thermophilus cysteine-free RNase H were determined by native state hydrogen exchange, thus providing a unique comparison of regional thermodynamics between thermophilic and mesophilic homologues. The general distribution of stability in the thermophilic protein is similar to that of its mesophilic homologue, with a proportional increase in stability for almost all residues. As a consequence, the residue-specific stabilities of the two proteins are remarkably similar under conditions where their global stabilities are the same. These results indicate that T. thermophilus RNase H is stabilized in a delocalized fashion, preserving a finely tuned balance of stabilizing interactions throughout the structure. Therefore, although protein stability can be altered by single amino acid substitution, evolution for optimal function may require more subtle and delocalized mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global amino acid compositions as deduced from the complete genomic sequences of six thermophilic archaea, two thermophilic bacteria, 17 mesophilic bacteria and two eukaryotic species were analysed by hierarchical clustering and principal components analysis. Both methods showed an influence of several factors on amino acid composition. Although GC content has a dominant effect, thermophilic species can be identified by their global amino acid compositions alone. This study presents a careful statistical analysis of factors that affect amino acid composition and also yielded specific features of the average amino acid composition of thermophilic species. Moreover, we introduce the first example of a ‘compositional tree’ of species that takes into account not only homologous proteins, but also proteins unique to particular species. We expect this simple yet novel approach to be a useful additional tool for the study of phylogeny at the genome level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the evaluation of metals and (metallo)proteins in vitreous humor samples and their correlations with some biological aspects in different post-mortem intervals (1-7 days), taking into account both decomposing and non-decomposing bodies. After qualitative evaluation of the samples involving 26 elements, representative metal ions (Fe, Mg and Mo) are determined by inductively coupled plasma mass spectrometry after using mini-vial decomposition system for sample preparation. A significant trend for Fe is found with post-mortem time for decomposing bodies because of a significant increase of iron concentration when comparing samples from bodies presenting 3 and 7 days post-mortem interval. An important clue to elucidate the role of metals is the coupling of liquid chromatography with inductively coupled plasma mass spectrometry for identification of metals linked to proteins, as well as mass spectrometry for the identification of those proteins involved in the post-mortem interval.