978 resultados para THERMAL PROTEIN DENATURATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of sodium lactate is compared with sucrose + sorbitol + sodium tri-poly phosphate as cryoprotectant on gel forming ability & protein denaturation of croaker surimi during frozen storage at -20±2°C for 90 days was evaluated. The quality of Croaker surimi with 6% (w/v) sodium lactate was examined in terms of biochemical parameters of muscle protein, thaw drip, gel strength and calcium ATPase activity :.omparing with those of surimi added with sucrose/sorbitol & without additive as control. Both the cryoprotectants minimized the negative effects of frozen storage on physico-chemical traits of myofibrillar proteins which was evident from the biochemical and sensory parameters. The residual Ca2+ ATPase activity and gel strength of surimi with sodium lactate were higher than those of control throughout 90 days of storage. Ca2+ A TPase activity and gel strength found a high positive correlation. From the results, it was found that sodium lactate was equally effective in preservation of croaker muscle protein native structure during frozen storage as the sucrose/ sorbitol and also less sweet without any risk of maillard browning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural stability of a peroxidase, a dimeric protein from royal palm tree (Roystonea regia) leaves, has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism, steady-state tryptophan fluorescence and analytical ultracentifugation under different solvent conditions. It is shown that the thermal and chemical (using guanidine hydrochloride (Gdn-HCl)) folding/unfolding of royal palm tree peroxidase (RPTP) at pH 7 is a reversible process involving a highly cooperative transition between the folded dimer and unfolded monomers, with a free stabilization energy of about 23 kcal per mol of monomer at 25 degrees C. The structural stability of RPTP is pH-dependent. At pH 3, where ion pairs have disappeared due to protonation, the thermally induced denaturation of RPTP is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, allowing it to be concluded that in solution RPTP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of RPTP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N ->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate. Obtained in this way, the value of RPTP stability at 25 degrees C is ca. 8 kcal per mole of monomer lower than at pH 7. In all probability, this quantity reflects the contribution of ion pair interactions to the structural stability of RPTP. From a comparison of the stability of RPTP with other plant peroxidases it is proposed that one of the main factors responsible for the unusually high stability of RPTP which enhances its potential use for biotechnological purposes, is its dimerization. (c) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whey proteins are becoming an increasingly popular functional food ingredient. There are, however, sensory properties associated with whey protein beverages that may hinder the consumption of quantities sufficient to gain the desired nutritional benefits. One such property is mouth drying. The influence of protein structure on the mouthfeel properties of milk proteins has been previously reported. This paper investigates the effect of thermal denaturation of whey proteins on physicochemical properties (viscosity, particle size, zeta-potential, pH), and relates this to the observed sensory properties measured by qualitative descriptive analysis and sequential profiling. Mouthcoating, drying and chalky attributes built up over repeated consumption, with higher intensities for samples subjected to longer heating times (p < 0.05). Viscosity, pH, and zeta-potential were found to be similar for all samples, however particle size increased with longer heating times. As the pH of all samples was close to neutral, this implies that neither the precipitation of whey proteins at low pH, nor their acidity, as reported in previous literature, can be the drying mechanisms in this case. The increase in mouth drying with increased heating time suggests that protein denaturation is a contributing factor and a possible mucoadhesive mechanism is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal denaturation and aggregation of the HbGp, in the oxy- and cyanomet-forms, was investigated by DSC, AUC, DLS, optical absorption and CD, in the pH range from 5.0 to 7.0. Oxy-HbGp has a denaturation process partially reversible and dependent on the temperature. DSC melting curve is characterized by a single peak with Tc value of 333.4±0.2K for oxy-HbGp, while two peaks with Tc values of 332.2±0.1 and 338.4±0.2K are observed for cyanomet-HbGp, at pH 7.0. In acidic pH oxy- and cyanomet-HbGp are more stable showing higher Tc values and aggregation. AUC data show that, HbGp, at pH 7.0, upon denaturation, remains undissociated at 323K, presenting oligomeric dissociation at 333 (12±3% of tetramer and 88±5% of whole HbGp) and 343K (70±5% of monomer and 30±2% of trimer). DLS data show that the lag period before aggregation is dependent on the temperature and HbGp concentration. Optical absorption and CD results show that the increase of temperature leads to the oxy-HbGp oxidation and aggregation, above 331K, in acidic pH. CD data, for HbGp, present a greater thermal stability in acid medium than at neutral pH, with similar Tc values for both oxidation forms. Our data are consistent with previous studies and represents an advance in understanding the thermal stability of oligomeric HbGp structure. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics Simulations of the TR alpha and TR beta LBDs in the absence and in the presence of the natural ligand Triac. The Simulations Show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary Structure elements, while the Structure remains essentially compact, resembling a molten globule state. This differs From most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TR alpha and TR beta Subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our Simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H 11, and the interaction of the region between H I and the Omega-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS), optical absorption spectroscopy (UV-VIS) and differential scanning calorimetry (DSC). At pH 7.0, cyanomet-HbGp is very stable, no oligomeric dissociation is observed, while denaturation occurs at 56 degrees C, 4 degrees C higher as compared to oxy-HbGp. The oligomeric dissociation of HbGp occurs simultaneously with some protein aggregation. Kinetic studies for oxy-HbGp using UV-VIS and DES allowed to obtain activation energy (E(a)) values of 278-262 kJ/mol (DES) and 333 kJ/mol (UV-VIS). Complimentary DSC studies indicate that the denaturation is irreversible, giving endotherms strongly dependent upon the heating scan rates, suggesting a kinetically controlled process. Dependence on protein concentration suggests that the two components in the endotherms are due to oligomeric dissociation effect upon denaturation. Activation energies are in the range 200-560 kJ/mol. The mid-point transition temperatures were in the range 50-65 degrees C. Cyanomet-HbGp shows higher mid-point temperatures as well as activation energies, consistent with its higher stability. DSC data are reported for the first time for an extracellular hemoglobin. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glossoscolex paulistus (HbGp) hemoglobin is an oligomeric protein, presenting a quaternary structure constituted by 144 globin and 36 non-globin chains (named linkers) with a total molecular mass of 3.6MDa. SDS effects on the oxy-HbGp thermal stability were studied, by DLS and SAXS, at pH 5.0, 7.0 and 9.0. DLS and SAXS data show that the SDS-oxy-HbGp interactions induce a significant decrease of the protein thermal stability, with the formation of larger aggregates, at pH 5.0. At pH 7.0, oxy-HbGp undergoes complete oligomeric dissociation, with increase of temperature, in the presence of SDS. Besides, oxy-HbGp 3.0mg/mL, pH 7.0, in the presence of SDS, has the oligomeric dissociation process reduced as compared to 0.5mg/mL of protein. At pH 9.0, oxy-HbGp starts to dissociate at 20°C, and the protein is totally dissociated at 50°C. The thermal dissociation kinetic data show that oxy-HbGp oligomeric dissociation at pH 7.0, in the presence of SDS, is strongly dependent on the protein concentration. At 0.5mg/mL of protein, the oligomeric dissociation is complete and fast at 40 and 42°C, with kinetic constants of (2.1±0.2)×10-4 and (5.5±0.4)×10-4s-1, respectively, at 0.6mmol/L SDS. However, at 3.0mg/mL, the oligomeric dissociation process starts at 46°C, and only partial dissociation, accompanied by aggregates formation is observed. Moreover, our data show, for the first time, that, for 3.0mg/mL of protein, the oligomeric dissociation, denaturation and aggregation phenomena occur simultaneously, in the presence of SDS. Our present results on the surfactant-HbGp interactions and the protein thermal unfolding process correspond to a step forward in the understanding of SDS effects. © 2013 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biomimetic systems employed for biotechnological applications i.e. as biosensors or bio fuel cells, require initial formation of conducting support/protein complexes with controlled properties. The specific interaction of the protein with the support determines important qualities of the device such as electrical communication, long-term stability and catalytic efficiency. In this respect the system parameters have to be chosen in a way that high protein loading on the support is achieved while protein denaturation upon adsorption is prevented. The conditions on the surface have to be adjusted in such a way that the desired surface reaction of the protein i.e. electron transfer to either the electrode or a second redox partner, is still guaranteed. Hence the choice of support, its functionlisation as well as the right adjustment of solution parameters play a crucial role in the rational design of these support/protein constructs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Effects of chilled and frozen storage on specific enthalpy (ΔH) and transition temperature (Td) of protein denaturation as well as on selected functional properties of muscle tissue of rainbow trout and herring were investigated. The Td of myosin shifted from 39 to 33 °C during chilling of trout post mortem, but was also influenced by pH. Toughening during frozen storage of trout fillet was characterized by an increased storage modulus of a gel made from the raw fillet. Differences between long term and short term frozen stored, cooked trout fillet were identified by a compression test and a consumer panel. These changes did not affect the Td and ΔH of heat denaturation during one year of frozen storage at –20 °C. In contrast the Td of two myosin peaks of herring shifted during frozen storage at –20 °C to a significant lower value and overlaid finally. Myosin was aggregated by hydrophobic protein-protein interactions. Both thermal properties of myosin and chemical composition were sample specific for wild herring, but were relative constant for farmed trout samples over one year. Determination of Td was very precise (standard deviation <2 %) at a low scanning rate (≤ 0.25 K·min-1) and is useful for monitoring the quality of chilled and frozen stored trout and herring.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structure characterization of proteins or enzymes by STM on electrochemically prepared HOPG surface studied in this laboratory is reviewed. The serial structures of Hb were observed. The differences between the denaturation and inactivation of HRP were investigated by in situ and ex situ STM. The structural variation of Hb in an organic solvent was imaged while protein denaturation was easily observed in a polar solvent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrochemical identification of the urea denaturation of horse heart cytochrome c in bulk solution at the 4,4'-dithiodipyridine-modified gold electrode is reported. The results are similar to the three-step transitions of equilibrium studies (Myer et al., Biochemistry, 19 (1980) 199) of urea denaturation of cytochrome c in bulk solution. This method permits a clear resolution of which of the three steps of urea denaturation is electrochemically related. In addition, by analysing the effects of urea on the structural forms of cytochrome c and on the solution properties, as well as the cyclic voltammetric responses of the protein, the individual forms of the urea denaturation of cytochrome c can be understood. The results reflect the superposition of protein denaturation on the electrode surface and in solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). DLS melting curves were measured for met-HbGp at different concentrations. SAXS temperature studies were performed for oxy-, cyanomet- and met-HbGp forms, at several pH values. At pH 5.0 and 6.0, the scattering curves are identical from 20 to 60 degrees C, and R-g is 108 angstrom, independent of the oxidation form. At pH 7.0, protein denaturation and aggregation occurs above 55 degrees C and 60 degrees C, for oxy and met-HbGp, respectively. Cyanomet-HbGp, at pH 7.0, is stable up to 60 degrees C. At alkaline pH (8.0-9.0) and higher temperature, an irreversible dissociation process is observed, with a decrease of R-g, D-max and I(0). Analysis by p(r), obtained from GNOM, and OLIGOMER, was used to fit the SAXS experimental scattering curves by a combination of theoretical curves obtained for HbLt fragments from the crystal structure. Our results show clearly the increasing contribution of smaller molecular weight fragments, as a function of increasing pH and temperature, as well as, the order of thermal stabilities: cyanomet-> oxy- > met-HbGp. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl](1/2) at 3.4-5M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys(36)-Cys(49) and two disulfide bonds formed by two pair of consecutive cysteines, Cys(22)-Cys(23) and Cys(56)-Cys(57), a unique disulfide structure of polypeptide that has not been documented previously.