899 resultados para THERAPY-INDUCED APOPTOSIS
Resumo:
The death ligand members of the tumor necrosis factor (TNF) family are potent inducers of apoptosis in a variety of cell types. In particular, TNF-related apoptosis-inducing ligand (TRAIL) has recently received much scientific and commercial attention because of its potent tumor cell-killing activity while leaving normal untransformed cells mostly unaffected. Furthermore, TRAIL strongly synergizes with conventional chemotherapeutic drugs in inducing tumor cell apoptosis, making it a most promising candidate for future cancer therapy. Increasing evidence indicates, however, that TRAIL may also induce or modulate apoptosis in primary cells. A particular concern is the potential side effect of TRAIL-based tumor therapies in the liver. In this review we summarize some of the recent findings on the role of TRAIL in tumor cell and hepatocyte apoptosis.
Resumo:
The rapeutic options for malignant pleural mesothelioma (MPM) are limited despite the increasing incidence globally. The vinca alkaloid vinorelbine exhibits clinical activity; however, to date, treatment optimization has not been achieved using biomarkers. BRCA1 regulates sensitivity to microtubule poisons; however, its role in regulating vinorelbine-induced apoptosis in mesothelioma is unknown. Here we demonstrate that BRCA1 plays an essential role in mediating vinorelbine-induced apoptosis, as evidenced by (1) the strong correlation between vinorelbine sensitivity and BRCA1 expression level; (2) induction of resistance to vinorelbine by BRCA1 using siRNA oligonucleotides; (3) dramatic down-regulation of BRCA1 following selection for vinorelbine resistance; and (4) the re-activation of vinorelbine-induced apoptosis following re-expression of BRCA1 in resistant cells. To determine whether loss of BRCA1 expression in mesothelioma was potentially relevant in vivo, BRCA1 immunohistochemistry was subsequently performed on 144 primary mesothelioma specimens. Loss of BRCA1 protein expression was identified in 38.9% of samples. Together, these data suggest that BRCA1 plays a critical role in mediating apoptosis by vinorelbine in mesothelioma, warranting its clinical evaluation as a predictive biomarker. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
The Bcr-Abl kinase inhibitor, imatinib mesylate, is the front line treatment for chronic myeloid leukaemia (CML), but the emergence of imatinib resistance has led to the search for alternative drug treatments and the examination of combination therapies to overcome imatinib resistance. The pro-apoptotic PBOX compounds are a recently developed novel series of microtubule targeting agents (MTAs) that depolymerise tubulin. Recent data demonstrating enhanced MTA-induced tumour cell apoptosis upon combination with the cyclin dependent kinase (CDK)-1 inhibitor flavopiridol prompted us to examine whether this compound could similarly enhance the effect of the PBOX compounds. We thus characterised the apoptotic and cell cycle events associated with combination therapy of the PBOX compounds and flavopiridol and results showed a sequence dependent, synergistic enhancement of apoptosis in CML cells including those expressing the imatinib-resistant T315I mutant. Flavopiridol reduced the number of polyploid cells formed in response to PBOX treatment but only to a small extent, suggesting that inhibition of endoreplication was unlikely to play a major role in the mechanism by which flavopiridol synergistically enhanced PBOX-induced apoptosis. The addition of flavopiridol following PBOX-6 treatment did however result in an accelerated exit from the G2/M transition accompanied by an enhanced downregulation and deactivation of the CDK1/cyclin B1 complex and an enhanced degradation of the inhibitor of apoptosis protein (IAP) survivin. In conclusion, results from this study highlight the potential of these novel series of PBOX compounds, alone or in sequential combination with flavopiridol, as an effective therapy against CML.
Resumo:
[EN] Background: Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. Methods: Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results: Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. Conclusions: A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe subcutaneous late toxicity after clinical treatment at high radiation doses in our series. However, due to the small sample size, other prospective studies with higher number of patients are needed to validate these results.
Resumo:
[EN] Head and neck cancer is treated mainly by surgery and radiotherapy. Normal tissue toxicity due to x-ray exposure is a limiting factor for treatment success. Many efforts have been employed to develop predictive tests applied to clinical practice. Determination of lymphocyte radio-sensitivity by radio-induced apoptosis arises as a possible method to predict tissue toxicity due to radiotherapy. The aim of the present study was to analyze radio-induced apoptosis of peripheral blood lymphocytes in head and neck cancer patients and to explore their role in predicting radiation induced toxicity. Seventy nine consecutive patients suffering from head and neck cancer, diagnosed and treated in our institution, were included in the study. Toxicity was evaluated using the Radiation Therapy Oncology Group scale. Peripheral blood lymphocytes were isolated and irradiated at 0, 1, 2 and 8 Gy during 24 hours. Apoptosis was measured by flow cytometry using annexin V/propidium iodide. Lymphocytes were marked with CD45 APC-conjugated monoclonal antibody. Radiation-induced apoptosis increased in order to radiation dose and fitted to a semi logarithmic model defined by two constants: α and β. α, as the origin of the curve in the Y axis determining the percentage of spontaneous cell death, and β, as the slope of the curve determining the percentage of cell death induced at a determined radiation dose, were obtained. β value was statistically associated to normal tissue toxicity in terms of severe xerostomia, as higher levels of apoptosis were observed in patients with low toxicity (p = 0.035; Exp(B) 0.224, I.C.95% (0.060-0.904)). These data agree with our previous results and suggest that it is possible to estimate the radiosensitivity of peripheral blood lymphocytes from patients determining the radiation induced apoptosis with annexin V/propidium iodide staining. β values observed define an individual radiosensitivity profile that could predict late toxicity due to radiotherapy in locally advanced head and neck cancer patients. Anyhow, prospective studies with different cancer types and higher number of patients are needed to validate these results.
Resumo:
Glutathione-S-transferase of the Pi class (GSTP1) is frequently overexpressed in a variety of solid tumors and has been identified as a potential therapeutic target for cancer therapy. GSTP1 is a phase II detoxification enzyme and conjugates the tripeptide glutathione to endogenous metabolites and xenobiotics, thereby limiting the efficacy of antitumor chemotherapeutic treatments. In addition, GSTP1 regulates cellular stress responses and apoptosis by sequestering and inactivating c-Jun N-terminal kinase (JNK). Thiazolides are a novel class of antibiotics for the treatment of intestinal pathogens with no apparent side effects on the host cells and tissue. Here we show that thiazolides induce a GSTP1-dependent and glutathione-enhanced cell death in colorectal tumor cell lines. Downregulation of GSTP1 reduced the apoptotic activity of thiazolides, whereas overexpression enhanced it. Thiazolide treatment caused strong Jun kinase activation and Jun kinase-dependent apoptosis. As a critical downstream target of Jun kinase we identified the pro-apoptotic Bcl-2 homolog Bim. Thiazolides induced Bim expression and activation in a JNK-dependent manner. Downregulation of Bim in turn significantly blocked thiazolide-induced apoptosis. Whereas low concentrations of thiazolides failed to induce apoptosis directly, they potently sensitized colon cancer cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic drug-induced cell death. Although GSTP1 overexpression generally limits chemotherapy and thus antitumor treatment, our study identifies GSTP1 as Achilles' heel and thiazolides as novel interesting apoptosis sensitizer for the treatment of colorectal tumors.
Resumo:
Malignant brain tumors are one of the most challenging cancers affecting society today. In a recent survey, an estimated 17,000 annual cases were recorded with a staggering total of 13,300 deaths. A unique degree of heterogeneity typifies glial tumors and presents a challenge for solitary anti-neoplastic treatments. Tumors subsist as heterogeneous masses that progress through dysplasia to astrocytomas, mixed glioma and glioblastoma multiforme. Although traditional therapeutic approaches have provided increments of success, the median survival time remains 12 months. The urgency to improve upon current clinical protocols has encouraged alternative experimental strategies such as p53 adenoviral gene therapy (Ad-p53). This study addresses the efficacy of Ad-p53 for the treatment of glioma. Our model presents a tumor response that is unique among human cancers. Ad-p53 effectively induces apoptosis in mutant p53 expressing cells yet fails to do so in those with wildtype p53. In order to adopt Adp53 as a standard anti-cancer modality, we characterized the role of the tumor suppressor gene p53 in mediating apoptosis. We demonstrate that altering cellular p53 status through the introduction of a dominant negative mutant p53 (175H, 248W, 273H) sensitized cells to Ad-p53. We discovered that wild-type p53 expressing glioma cells retain the apoptotic machinery necessary to accomplish cell death, but have developed mechanisms that interfere with p53 signaling. Earlier studies have not addressed the mechanisms of Ad-p53 apoptosis nor the resistance exhibited by wild-type p53 glioma. To explain the divergent phenotypes, we identified apoptotic pathways activated and effectors of the response. We illustrated that modulation of the death receptor Fas/APO-1 is a principal means of Ad-p53 signaling that is impaired in wild-type p53 glioma. Moreover, the apoptotic response was found to be a multi-faceted process that engaged several caspases, most notably caspases -1, -3 and -8. Lastly, we assessed the ability of anti-apoptotic molecules Bcl-2 and CrmA to inhibit Ad-p53 apoptosis. These studies revealed that Ad-p53 is a powerful tool for inducing apoptosis that can be delayed but not inhibited by anti-apoptotic means. This work is critical for understanding the development of glioma and the phenotypic and genotypic alterations that account for tumor resistance. ^
Resumo:
A combination of psoralens and ultraviolet-A radiation referred to as PUVA, is widely used in the treatment of psoriasis. PUVA therapy is highly effective in killing hyperproliferative cells, but its mechanism of action has not been fully elucidated. Psoralen binds to DNA, and upon photoactivation by UVA, it forms monofunctional adducts and interstrand cross-links. PUVA treatment has been shown to be mutagenic and to produce tumors in animals. In addition, epidemiological studies have reported a 10 to 15 percent increased risk of developing squamous cell carcinoma in individuals treated chronically with PUVA. However, it remains a treatment for skin disorders such as psoriasis because its benefits outweigh its risks. The widespread use of PUVA therapy and its associated cancer risk requires us to understand the molecular mechanisms by which PUVA induces cell death. Immortalized JB6 mouse epidermal cells, p53−/− mice, and Fas Ligand−/− (gld) mice were used to investigate the molecular mechanism by which PUVA kills cells. Treatment of JB6 cells with 10 μg/ml 8-methoxypsoralen followed by irradiation with 20 kJ/m2 UVA resulted in cell death. The cells exhibited morphological and biochemical characteristics of apoptosis such as chromatin condensation, DNA ladder formation, and TUNEL-positivity. PUVA treatment stabilized and phosphorylated p53 leading to its activation, as measured by nuclear localization and induction of p21Waf/Cip1, a transcriptional target of p53. Subsequent in vivo studies revealed that there was statistically significantly less apoptosis in p53 −/− mice than in p53+/+ mice at 72 hours after PUVA. In addition, immunohistochemical analysis revealed more Fas and FasL expression in p53+/+ mice than in p53−/− mice, suggesting that p53 is required to transcriptionally activate Fas, which in turn causes the cells to undergo apoptosis. Studies with gld mice confirmed a role for Fas/FasL interactions in PUVA-induced apoptosis. There was statistically significantly less apoptosis in gld mice compared with wild-type mice 24, 48, and 72 hours after PUVA. These results demonstrate that PUVA-induced apoptosis in mouse epidermal cells requires p53 and Fas/FasL interactions. These findings may be important for designing effective treatments for diseases such as psoriasis without increasing the patient's risk for skin cancer. ^
Resumo:
Gastrointestinal stromal tumors (GISTs) are oncogene-addicted cancers driven by activating mutations in the genes encoding receptor tyrosine kinases KIT and PDGFR-α. Imatinib mesylate, a specific inhibitor of KIT and PDGFR-α signaling, delays progression of GIST, but is incapable of achieving cure. Thus, most patients who initially respond to imatinib therapy eventually experience tumor progression, and have limited therapeutic options thereafter. To address imatinib-resistance and tumor progression, these studies sought to understand the molecular mechanisms that regulate apoptosis in GIST, and evaluate combination therapies that kill GISTs cells via complementary, but independent, mechanisms. BIM (Bcl-2 interacting mediator of apoptosis), a pro-apoptotic member of the Bcl-2 family, effects apoptosis in oncogene-addicted malignancies treated with targeted therapies, and was recently shown to mediate imatinib-induced apoptosis in GIST. This dissertation examined the molecular mechanism of BIM upregulation and its cytotoxic effect in GIST cells harboring clinically-representative KIT mutations. Additionally, imatinib-induced alterations in BIM and pro-survival Bcl-2 proteins were studied in specimens from patients with GIST, and correlated to apoptosis, FDG-PET response, and survival. Further, the intrinsic pathway of apoptosis was targeted therapeutically in GIST cells with the Bcl-2 inhibitor ABT-737. These studies show that BIM is upregulated in GIST cells and patient tumors after imatinib exposure, and correlates with induction of apoptosis, response by FDG-PET, and disease-free survival. These studies contribute to the mechanistic understanding of imatinib-induced apoptosis in clinically-relevant models of GIST, and may facilitate prediction of resistance and disease progression in patients. Further, combining inhibition of KIT and Bcl-2 induces apoptosis synergistically and overcomes imatinib-resistance in GIST cells. Given that imatinib-resistance and GIST progression may reflect inadequate BIM-mediated inhibition of pro-survival Bcl-2 proteins, the preclinical evidence presented here suggests that direct engagement of apoptosis may be an effective approach to enhance the cytotoxicity of imatinib and overcome resistance.
Resumo:
Non-melanoma skin cancers, including basal cell carcinoma and squamous cell carcinoma (SCC), are the most common neoplasms in the United States with a lifetime risk nearly equal to all other types of cancer combined. Retinoids are naturally occurring and synthetic analogues of vitamin A that bind to nuclear retinoid receptors and modulate gene expression as a means of regulating cell proliferation and differentiation. Retinoids have been employed for many years in the treatment of various cutaneous lesions and for cancer chemoprevention and therapy. The primary drawback limiting the use of retinoids is their toxicity, which is also associated with receptor-gene interactions. In this study, the effects of the synthetic retinoids N-(4-hydroxyphenyl)retinamide (4HPR) and 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) were examined in cutaneous keratinocytes. Four human cutaneous SCC cell lines were examined along with normal human epidermal keratinocyte (NHEK) cells from two donors. Sensitivity to 4HPR or CD437 alone or in combination with other agents was determined via growth inhibition, cell cycle distributions, or apoptosis induction. Both synthetic retinoids were able to promote apoptosis in SCC cells more effectively than the natural retinoid all-trans retinoic acid. Apoptosis could not be inhibited by nuclear retinoic acid receptor antagonists. In NHEK cells, 4HPR induced apoptosis while CD437 promoted G1 arrest. 4HPR acted as a prooxidant by generating reactive oxygen species (ROS) in SCC and NHEK cells. 4HPR-induced apoptosis in SCC cells could be inhibited or potentiated by manipulating cellular defenses against oxidative stress, indicating an essential role for ROS in 4HPR-induced apoptosis. CD437 promoted apoptosis in SCC cells in S and G2/M phases of the cell cycle within two hours of treatment, and this rapid induction could not be blocked with cycloheximide. This study shows: (1) 4HPR- and CD437-induced apoptosis do not directly involve a traditional retinoid pathway; (2) 4HPR can act as a prooxidant as a means of promoting apoptosis; (3) CD437 induces apoptosis in SCC cells independent of protein synthesis and is potentially less toxic to NHEK cells; and (4) 4HPR and CD437 operate under different mechanisms with respect to apoptosis induction and this may potentially enhance their therapeutic index in vivo. ^
Resumo:
Nitric oxide is involved in a multitude of processes including regulation of vascular tone, neurotransmission, immunity, and cancer. Evidence suggests that nitric oxide exhibits anti-apoptotic activity in melanoma cells. Our laboratory showed that tumor expression of inducible nitric oxide synthase correlated strongly with poor survival in stage III and IV melanoma patients, suggesting an antagonistic role for nitric oxide in melanoma response to therapy. Therefore, the hypothesis that endogenously produced nitric oxide antagonizes chemotherapy-induced apoptosis was formed. Using cisplatin as a model for DNA damage in melanoma cell lines, the capacity of nitric oxide to regulate cell growth and apoptotic responses to cisplatin treatment was examined. The depletion of endogenously generated nitric oxide resulted in changes in cell cycle regulation and enhanced cisplatin-induced apoptosis in melanoma cells. Since nitric oxide was shown to be involved in the regulation of p53 stability, conformation and DNA binding activity, whether signaling through wild-type p53 in melanoma cells is regulated by nitric oxide was tested. Cisplatin-induced p53 accumulation and p21Waf1/Cip1/Sdi1 expression in nitric oxide-depleted melanoma cells were found to be strongly suppressed. When p53 binding to the p21Waf1/Cip1/Sdi1 promoter was examined, it was found that nitric oxide depletion significantly reduced the cisplatin-induced formation of p53-DNA complexes. These results suggest that nitric oxide is required for activation of wild-type p53 after DNA damage in melanoma cells. Finally, whether signaling through p53 controls melanoma response to DNA damage was examined. Transfection of a plasmid containing a dominant negative form of mutated p53 inhibited p21 Waf1/Cip1/Sdi1 expression and concomitantly enhanced apoptosis after cisplatin treatment. These data suggest that the induction of wild-type p53 protects melanoma cells against DNA damage via the up-regulation of p21 Waf1/Cip1/Sdi1. Together, these data strongly support the model that endogenous nitric oxide is required for p53 activation and p21Waf1/Cip1/Sdi1 expression after DNA damage, which can enhance melanoma resistance to therapy. Thus, in context of melanoma cells with wild-type p53 , low levels of endogenous constitutively-produced nitric oxide appear to facilitate the activation of p53 in response to DNA damage, thereby allowing for cell cycle arrest via p21Waf1/Cip1/Sdi1 induction, adequate DNA repair, and ultimately enhanced resistance to apoptosis. ^
Resumo:
Apoptosis is essential for the maintenance of inherited genomic integrity. During DNA damage-induced apoptosis, mechanisms of cell survival, such as DNA repair are inactivated to allow cell death to proceed. Here, we describe a role for the mammalian DNA repair enzyme Exonuclease 1 (Exo1) in DNA damage-induced apoptosis. Depletion of Exo1 in human fibroblasts, or mouse embryonic fibroblasts led to a delay in DNA damage-induced apoptosis. Furthermore, we show that Exo1 acts upstream of caspase-3, DNA fragmentation and cytochrome c release. In addition, induction of apoptosis with DNA-damaging agents led to cleavage of both isoforms of Exo1. The cleavage of Exo1 was mapped to Asp514, and shown to be mediated by caspase-3. Expression of a caspase-3 cleavage site mutant form of Exo1, Asp514Ala, prevented formation of the previously observed fragment without any affect on the onset of apoptosis. We conclude that Exo1 has a role in the timely induction of apoptosis and that it is subsequently cleaved and degraded during apoptosis, potentially inhibiting DNA damage repair.
Resumo:
The induction of apoptosis in thymocytes by the glucocorticoid dexamethasone was used as a model system to investigate whether there are changes in 20 S and 26 S proteasome activities during apoptosis. We observed that thymocytes contain high concentrations of proteasomes and that following treatment with dexamethasone, cell extracts showed a decrease in proteasome chymotrypsin-like activity which correlated with the degree of apoptosis observed. The decrease in chymotrypsin-like activity of 20 S and 26S proteasomes was still apparent after these complexes had been partially puri®ed from apoptotic thymocyte extracts and was therefore not due to competition resulting from a general increase in protein turnover. The trypsin-like and peptidylglutamylpeptide hydrolase activities of proteasome complexes were also observed to decrease during apoptosis, but these decreases were reversed by the inhibition of apoptosis by the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-¯uoromethylketone. However, the chymotrypsin-like activity of proteasomes decreased further in the presence of the apoptosis inhibitor. Val-Ala-Asp-¯uoromethylketone was found to inhibit the chymotrypsin- and trypsin-like activity of 26 S proteasomes in .itro. The decrease in proteasome activities in apoptosis did not appear to be due to a decrease in the concentration of total cellular proteasomes. Thus, the early decreases in 20 S and 26 S proteasome activities during apoptosis appear to be due to a down-regulation of their proteolytic activities and not to a decrease in their protein concentration. These data suggest that proteasomes may be responsible, in thymocytes, for the turnover of a protein that functions as a positive regulator of apoptosis.