11 resultados para TFIIIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a system to transcribe the yeast 5S rRNA gene in the absence of the transcription factor TFIIIA. A long transcript was synthesized both in vitro and in vivo from a hybrid gene in which the tRNA-like promoter sequence of the RPR1 gene was fused to the yeast 5S RNA gene. No internal initiation directed by the endogenous 5S rDNA promoter or any processing of the hybrid transcript was observed in vitro. Yeast cells devoid of transcription factor TFIIIA, which, therefore, could not synthesize any 5S rRNA from the endogenous chromosomal copies of 5S rDNA, could survive if they carried the hybrid RPR1-5S construct on a multicopy plasmid. In this case, the only source of 5S rRNA was the precursor RPR1-5S transcript that gave rise to two RNA species slightly larger than wild-type 5S rRNA. This establishes that the only essential function of TFIIIA is to promote the synthesis of 5S rRNA. However, cells devoid of TFIIIA and surviving with these two RNAs grew more slowly at 30 degrees C compared with wild-type cells and were thermosensitive at 37 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects on fish reproduction can result from a variety of toxicity mechanisms first operating at the molecular level. Notably, the presence in the environment of some compounds termed endocrine disrupting chemicals (EDCs) can cause adverse effects on reproduction by interfering with the endocrine system. In some cases, exposure to EDCs leads to the animal feminization and male fish may develop oocytes in testis (intersex condition). Mugilid fish are well suited sentinel organisms to study the effects of reproductive EDCs in the monitoring of estuarine/marine environments. Up-regulation of aromatases and vitellogenins in males and juveniles and the presence of intersex individuals have been described in a wide array of mullet species worldwide. There is a need to develop new molecular markers to identify early feminization responses and intersex condition in fish populations, studying mechanisms that regulate gonad differentiation under exposure to xenoestrogens. Interestingly, an electrophoresis of gonad RNA, shows a strong expression of 5S rRNA in oocytes, indicating the potential of 5S rRNA and its regulating proteins to become useful molecular makers of oocyte presence in testis. Therefore, the use of these oocyte markers to sex and identify intersex mullets could constitute powerful molecular biomarkers to assess xenoestrogenicity in field conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The estimation of maturity and sex of fish stocks in European waters is a requirement of the EU Data Collection Framework as part of the policy to improve fisheries management. On the other hand, research on fish biology is increasingly focused in molecular approaches, researchers needing correct identification of fish sex and reproductive stage without necessarily having in house the histological know-how necessary for the task. Taking advantage of the differential gene transcription occurring during fish sex differentiation and gametogenesis, the utility of 5S ribosomal RNA (5S rRNA) and General transcription factor IIIA (gtf3a) in the molecular identification of sex and gametogenic stage was tested in different economically-relevant fish species from the Bay of Biscay. Gonads of 9 fish species (, Atlantic, Atlantic-chub and horse mackerel, blue whiting, bogue, European anchovy, hake and pilchard and megrim), collected from local commercial fishing vessels were histologically sexed and 5S and 18S rRNA concentrations were quantified by capillary electrophoresis to calculate a 5S/18S rRNA index. Degenerate primers permitted cloning and sequencing of gtf3a fragments in 7 of the studied species. 5S rRNA and gtf3a transcript levels, together with 5S/18S rRNA index, distinguished clearly ovaries from testis in all of the studied species. The values were always higher in females than in males. 5S/18S rRNA index values in females were always highest when fish were captured in early phases of ovary development whilst, in later vitellogenic stages, the values decreased significantly. In megrim and European anchovy, where gonads in different oogenesis stages were obtained, the 5S/18S rRNA index identified clearly gametogenic stage. This approach, to the sexing and the quantitative non-subjective identification of the maturity stage of female fish, could have multiple applications in the study of fish stock dynamics, fish reproduction and fecundity and fish biology in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

  锌指蛋白在植物生长发育中具有重要功能,它们可以识别并结合特定的DNA序列进行转录调控,还能够参与蛋白之间相互作用的调节。我们根据锌指蛋白等转录因子特征结构域的序列特点,从来自10 K水稻芯片的EST数据库中筛选出编码58个EST序列。通过对器官表达特异性的比较分析,从中选出七个只在单一器官表达的基因,并对这七个基因的功能进行研究。对其转基因水稻的表型分析发现,C1基因调节水稻的株高和穗的发育;LIM 家族的F9影响小花的形态,主要体现在雌蕊与雄蕊的发育;锌指蛋白S34调控叶倾角的变化;F14基因编码一个核定位的TFIIIA类锌指蛋白,具体功能尚不清楚;锌指蛋白F35转基因水稻主根缩短,侧根数目显著减少。它编码一个推测的ArfGAP (Arf GTPase activating protein),据此我们将其命名为OsAGAP,并对其进行深入研究。   OsAGAP的cDNA全长为1328bp,编码的蛋白由320个氨基酸组成,含有两个保守结构域:锌指结构域和C2 结构域。其中锌指结构域属于CX2CX16CX2C类,即ArfGAP domain的特征结构。GTP酶活性测定试验表明,OsAGAP蛋白能够激活水稻Arf的GTP酶活性,另外,OsAGAP还能够恢复酵母ArfGAP缺失突变体的表型。说明OsAGAP编码的蛋白是水稻中的一个ArfGAP。   OsAGAP在水稻各器官中均有表达,但强弱有所不同。RNA原位杂交结果显示,它在茎尖分生组织与侧生原基及侧根部位表达强烈;它在根尖主要分布于中央维管组织、分生区、皮层细胞,最有趣的是恰好与生长素在根尖极性运输路径相吻合。在亚细胞水平,OsAGAP广泛分布于细胞膜、细胞质、细胞核。   OsAGAP超表达水稻主根、不定根长度缩短,侧根数目显著减少表现出类似于生长素极性运输突变体的表型。其主根伸长对TIBA的抑制作用不敏感,这暗示OsAGAP超表达水稻的生长素极性运输被破坏;另外,其对各种生长素的作用敏感性也发生变化,对IAA、2,4-D的不敏感,而对NAA的反应与野生型一致,根据各类生长素进出细胞机制不同,可以推测超表达水稻的输入能力存在缺陷。极性运输实验结果表明,超表达水稻极性运输能力被破坏;对生长素输入能力的测定进一步表明,超表达水稻根载体的介导的生长素输入能力显著下降。另外,NAA处理能够恢复超表达水稻中侧根发育受抑的表型缺陷。由此可见,OsAGAP在水稻中超表达破坏了生长素极性运输的输入能力。   FM1-43是一类特异标记囊泡运输的荧光染料。经其染色标记后,OsAGAP超表达水稻细胞内囊泡成片聚集,形成“BFA区间”,表现出囊泡运输被破坏的典型特征。透射电镜观察发现,超表达水稻细胞内有大量的小液泡,其中积累了电子密度很高的颗粒物质。由此推测,可能由于细胞的囊泡运输被破坏,导致胞内的代谢物质不能被正常运送或分泌,而在液泡中暂时贮存以维持细胞环境的稳定。   在酵母和动物细胞中的研究表明, ArfGAP是调控囊泡运输的一个重要因子,然而目前还没有关于ArfGAP在植物细胞中生理作用的报道。我们的结果说明,OsAGAP作为的一个ArfGAP,它通过调控水稻中的囊泡运输,而影响了生长素的极性运输,具体表现在对生长素输入能力的调控。由此,我们推测ArfGAP可能在生长素的极性运输中也起着重要的调控作用。   但OsAGAP在拟南芥中却通过调控植株生长素的水平,而影响了转基因拟南芥根的发育。每种生物都有多个ArfGAP,它们之间的分工存在联系,但各不相同。OsAGAP是拟南芥的外源基因,它在拟南芥中可能以不同于水稻的机制起作用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

典型的真核生物有四种rRNA(18S、5.8S、28S和5SrRNA)。一般18S、5.8S和28S的基因分别由转录间隔区(ITS)隔开而位于同一个转录单位上构成一个rRNA基因拷贝,多个rRNA基因拷贝串联形成rDNA。rDNA聚集在一起构成核仁组织区(NOR),成为核仁发生的位置。5SrRNA基因除在少数真核生物(如:酵母)中是和18S、28S rRNA基因位于同一个转录单位上外,一般是处在核仁以外的区域。贾第虫一度被认为是现存最原始的真核生物。支持这一观点的一个重要证据之一就是它还不具核仁结构。那么它的rDNA与典型真核生物的相比会有怎样的特点呢?本文在基因组的水平上对贾第虫的rDNA进行了全面调查分析,并对5S rRNA及其相关蛋白进行重点研究,得到如下结果和结论: 1)贾第虫的18S rRNA(1448bp)基因和28S rRNA(2300bp)基因比其他一些真核生物的(一般为1800bp和3400bp)要小的多,甚至比一些原核生物的相应的rRNA基因还要小。不仅如此,其5.8S rRNA基因和28SrRNA基因之间的转录间隔区(ITS2)比典型真核生物的对应区域也要短得多(只有54bp),且GC含量较高。结构预测表明该间隔区不能形成在许多真核生物中所能形成的保守的二级结构。更特别的是,贾第虫基因组中的rRNA基因序列大部分都是不完整的,并且不按照18S-5.8S-28S rRNA基因顺序排列,也没有多个完整拷贝顺序排列的区域。这提示贾第虫rRNA基因可能是以一种不同于典型真核生物的方式聚集的。因此本文认为以上这些特点可能与贾第虫不能形成典型核仁结构有关。 2)本文从贾第虫基因组中鉴定出了5S rRNA基因,并实验验证了其表达及其完整基因序列所编码的5S rRNA具有典型真核生物的T型二级结构,且具有绝大多数保守位点。RT-PCR表明该基因具有转录活性。该结果否定了前人的贾第虫没有5S rRNA的实验结果。并表明贾第虫尽管很原始,但其5S rRNA基因仍然是独立存在的和单独转录的。贾第虫基因组中总共有8个5S rRNA基因拷贝(且其中还有一个拷贝具有15个bp的异常插入)这大大低于一般真核生物的拷贝数。这些5S rRNA基因也不形成串联排列的区域。 我们还在贾第虫中鉴定出在真核生物中唯一与5S rRNA接触的核糖体蛋白L5蛋白并验证了其表达,该序列与其他真核生物的L5蛋白相似性很高,这提示贾第虫在5S rRNA基因转录出核后与L5蛋白结合形成5S RNP的过程可能与典型的真核生物是一致的。此外,我们从贾第虫中鉴定不出符合典型真核生物TFIIIA因子特征的蛋白,这提示贾第虫5S rRNA的转录起始以及转录后出核的机制可能与典型真核生物不同。过去对贾第虫的研究表明高等真核生物里RNA聚合酶III所独有的四个亚基在贾第虫中找不到同源物,而这样不完整的RNA聚合酶III已经可以在贾第虫中完成5S rRNA的转录了,这表明RNA聚合酶III所独有的这些亚基可能是为了完成其他功能而进化出来的。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defined model systems consisting of physiologically spaced arrays of H3/H4 tetramer⋅5S rDNA complexes have been assembled in vitro from pure components. Analytical hydrodynamic and electrophoretic studies have revealed that the structural features of H3/H4 tetramer arrays closely resemble those of naked DNA. The reptation in agarose gels of H3/H4 tetramer arrays is essentially indistinguishable from naked DNA, the gel-free mobility of H3/H4 tetramer arrays relative to naked DNA is reduced by only 6% compared with 20% for nucleosomal arrays, and H3/H4 tetramer arrays are incapable of folding under ionic conditions where nucleosomal arrays are extensively folded. We further show that the cognate binding sites for transcription factor TFIIIA are significantly more accessible when the rDNA is complexed with H3/H4 tetramers than with histone octamers. These results suggest that the processes of DNA replication and transcription have evolved to exploit the unique structural properties of H3/H4 tetramer arrays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem–loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc finger domains are perhaps the most versatile of all known DNA binding domains. By fusing up to six zinc finger modules, which normally recognize up to 18 bp of DNA, designer transcription factors can be produced to target unique sequences within large genomes. However, not all continuous DNA sequences make good zinc finger binding sites. To avoid having to target unfavorable DNA sequences, we designed multizinc finger peptides with linkers capable of spanning long stretches of nonbound DNA. Two three-finger domains were fused by using either transcription factor IIIA for the Xenopus 5S RNA gene (TFIIIA) finger 4 or a non-sequence-specific zinc finger as a “structured” linker. Our gel-shift results demonstrate that these peptides are able to bind with picomolar affinities to target sequences containing 0–10 bp of nonbound DNA. Furthermore, these peptides display greater sequence selectivity and bind with higher affinity than similar six-finger peptides containing long, flexible linkers. These peptides are likely to be of use in understanding the behavior of polydactyl proteins in nature and in the targeting of human, animal, or plant genomes for numerous applications. We also suggest that in certain polydactyl peptides an individual finger can “flip” out of the major groove to allow its neighbors to bind shorter, nontarget DNA sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Wilms tumor suppressor gene WT1 is implicated in the ontogeny of genito-urinary abnormalities, including Denys-Drash syndrome and Wilms tumor of the kidney. WT1 encodes Kruppel-type zinc finger proteins that can regulate the expression of several growth-related genes, apparently by binding to specific DNA sites located within 5' untranslated leader regions as well as 5' promoter sequences. Both WT1 and a closely related early growth response factor, EGR1, can bind the same DNA sequences from the mouse gene encoding insulin-like growth factor 2 (Igf-2). We report that WT1, but not EGR1, can bind specific Igf-2 exonic RNA sequences, and that the zinc fingers are required for this interaction. WT1 zinc finger 1, which is not represented in EGR1, plays a more significant role in RNA binding than zinc finger 4, which does have a counterpart in EGR1. Furthermore, the normal subnuclear localization of WT1 proteins is shown to be RNase, but not DNase, sensitive. Therefore, WT1 might, like the Kruppel-type zinc finger protein TFIIIA, regulate gene expression by both transcriptional and posttranscriptional mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The x-ray absorption fine structure (XAFS) zinc K-edge steps for intact stages I,II and V,VI Xenopus laevis oocytes demonstrate that the zinc concentration is about 3 and 1 mM, respectively. However, the chi(k) function for the early stage oocytes differs markedly from that for the late one. Analysis of the XAFS data for stage I,II oocytes indicates that zinc is bound to 2.0 +/- 0.5 sulfur atoms at an average coordination distance of 2.29 +/- 0.02 angstroms and 2.0 +/- 0.5 nitrogen or oxygen (N/O) atoms at 2.02 +/- 0.02 angstroms. In marked contrast, in stage V,VI oocytes, zinc is bound to 4.1 +/- 0.4 N/O atoms at an average distance of 1.98 +/- 0.01 angstroms. Our previous studies demonstrated that 90% of the zinc in stage VI oocytes is sequestered within yolk platelets, associated with a single molecule, lipovitellin, the proteolytically processed product of vitellogenin. XAFS analysis of yolk platelets, lipovitellin, and vitellogenin demonstrates that zinc is bound to 4.0 +/- 0.5 N/O ligands at an average distance of 1.98 +/- 0.01 angstroms in each case, identical to that of stage V,VI oocytes. The higher shell contributions in the Fourier transforms indicate that two of the N/O zinc ligands are His in both stage V,VI and I,II oocytes. The results show that in stage I,II oocytes, there is a high concentration of a zinc protein whose zinc coordination site likely is composed of (His)2(Cys)2, such as, e.g., TFIIIA. As the oocytes develop, the predominant zinc species becomes one that exhibits the (His)2(N/0)2 zinc site found in lipovitellin. Hence, the ligands to the zinc atoms in intact oocytes and the changes that take place as a function of oogenesis and after their fertilization, during embryogenesis, now can be examined and explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human immunodeficiency virus type 1 (HIV-1) Rev protein is required for nuclear export of late HIV-1 mRNAs. This function is dependent on the mutationally defined Rev activation domain, which also forms a potent nuclear export signal. Transcription factor IIIA (TFIIIA) binds to 5S rRNA transcripts and this interaction has been proposed to play a role in the efficient nuclear export of 5S rRNA in amphibian oocytes. Here it is reported that amphibian TFIIIA proteins contain a sequence element with homology to the Rev activation domain that effectively substitutes for this domain in inducing the nuclear export of late HIV-1 mRNAs. It is further demonstrated that this TFIIIA sequence element functions as a protein nuclear export signal in both human cells and frog oocytes. Thus, this shared protein motif may play an analogous role in mediating the nuclear export of both late HIV-1 RNAs and 5S rRNA transcripts.