954 resultados para TERNARY BLENDS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the content of a copolymer consisting of high impact polystyrene grafted with maleic anhydride (HIPS-g-MA) on morphological and mechanical properties of PA1010/HIPS blends has been studied. Blend morphologies were controlled by adding HIPS-g-MA during melt processing, thus the dispersion of the HIPS phase and interfacial adhesion between the domains and matrices in these blends were changed obviously. The weight fractions of HIPS-g-MA in the blends increased from 2.5 to 20, then much finer dispersions of discrete HIPS phase with average domain sizes decreased from 6.1 to 0.1 mu m were obtained. It was found that a compatibilizer, a graft copolymer of HIPS-g-MA and PA1010 was synthesized in situ during the melt mixing of the blends. The mechanical properties of compatibilized blends were obviously better than those of uncompatibilized PA1010/HIPS blends. These behaviors could be attributed to the chemical interactions between the two components of PA1010 and HIPS-g-MA and good dispersion in PA1010/HIPS/HIPS-g-MA blends. Evidence of reactions in the blends was seen in the morphology and mechanical behaviour of the solid. The blend containing 5 wt % HIPS-g-MA component exhibited outstanding toughness. (C) 1999 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphology, mechanical properties, and interfacial interaction of polyamide 1010/polypropylene (PA1010/ PP) blends compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA) were studied. It was found that the size of the PP domains, tensile and impact strength of ternary blends, and adhesion fracture energy between two layers of PA1010 and PP were all significantly dependent on the PP-g-GMA contents in the PP layer. Correlations between morphology and related properties were sought. The improvements in properties have been attributed to chemical and physical interaction occurring between PA1010 and PP-g-GMA. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of oxygenated renewable fuels, such as ethanol or ethyl tert-butyl ether (ETBE) to standard gasoline may be necessary to comply with some environmental directives but could also prevent compliance with some fuel regulations and could also seriously change engine performance. From this point of view, the Reid Vapour Pressure (RVP), the distillation curve, the oxygen content and the density belong to the group of the most relevant parameters. This study evaluates the influence of the simultaneous addition of ethanol and ETBE on some physical properties of engine gasoline. The main conclusion is that the simultaneous addition of ETBE and ethanol changes the RVP, the distillation curve and the density in a way that can affect engine operation and the mandatory EN 228 and ASTM D4814 standards. Some opposite properties of both oxygenates could help to increase the renewable energy content without preventing compliance with these regulations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Binary and ternary blends of nylon-6/low density polyethylene (nylon-6/LDPE) and Nylon-6/LDPE/poly(ethylene-co-glycidyl methacrylate) were prepared by melt mixing. The blends exhibit two phase morphology with LDPE dispersed in the form of spherical domains in the nylon-6 matrix. The mechanical properties of the blends were measured by standard methods. It is shown that the use of the epoxy copolymer as a compatibilizer improves the impact strength of the blend as compared to nylon-6, which is attributed to better stress transfer across the interface due to the compatibilizer. The data for each mechanical property were also fitted into a best fit model equation and the method of steepest ascent was applied to arrive at the optimum composition of the blend for that property.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Styrene-b-(ethylene-co-1-butene)-b-styrene (SEBS) triblock copolymer functionalized with epsilon-caprolactam blocked allyl (3-isocyanate-4-tolyl) carbamate (SEBS-g-BTAI) was used to toughen polyamide 6 (PA6) via reactive blending. Compared to the PA6/SEBS blends, mechanical properties such as tensile strength, Young's modulus, especially Izod notched strength of PA6/SEBS-g-BTAI blends were improved distinctly. Both theological and FTIR results indicated a new copolymer formed by the reaction of end groups of PA6 and isocyanate group regenerated in the backbone of SEBS-g-BTAI. Smaller dispersed particle sizes with narrower distribution were found in PA6/SEBS-g-BTAI blends, via field emitted scanning electron microscopy (FESEM). The core-shell structures with PS core and PEB shell were also observed in the PA6/SEBS-g-BTAI blends via transmission electron microscopy (TEM), which might improve the toughening ability of the rubber particles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The melt rheological properties of binary uncompatibilized polypropylene -polyamide6 (PP-PA6) blends and ternary blends compatibilized with maleic anhydride-grafted PP (PP-PP-g-MAH-PA6) were studied using a capillary rheometer. The experimental shear viscosities of blends were compared with those calculated from Utracki's relation. The deviation value delta between these two series of data was obtained. In binary PP-PA6 blends, when the compatibility between PP and PA6 was poor, the deformation recovery of dispersed PA6 particles played the dominant role during the capillary flow, the experimental values were smaller than those calculated, and delta was negative. The higher the dispersed phase content, the more deformed the droplets were and the lower the apparent shear viscosity. Also, the absolute value of delta increased with the dispersed phase composition. In ternary PP-PP-g-MAH-PA6 systems, when the compatibility between PP and PA6 was enhanced by PP-g-MAH, the elongation and break-up of the dispersed particles played the dominant role, and the experimental values were higher than calculated. It was observed that the higher the dispersion of the PA6 phase, the higher the delta values of the ternary blends and the larger the positive deviation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, ethylene-propylene-diene-rubber (EPDM) was epoxidized with an in situ formed performic acid to prepare epoxided EPDM (eEPDM). The eEPDM together with the introduction of PP-g-AA was used to compatibilize PP/EPDM blends in a Haake mixer. FTIR results showed that the EPDM had been epoxidized. The reaction between epoxy groups in the eEPDM and carboxylic acid groups in PP-g-AA had taken place, and PP-g-EPDM copolymers were formed in situ. Torque test results showed that the actual temperature and torque values for the compatibilized blends were higher than that of the uncompatibilized blends. Scanning electron microscopy (SEM) observation showed that the dispersed phase domain size of compatibilized blends and the uncompatibilized blends were 0.5 and 1.5 mu m, respectively. The eEPDM together with the introduction of PP-g-AA could compatibilize PP/EPDM blends effectively. Notched Izod impact tests showed that the formation of PP-g-EPDM copolymer improved the impact strength and yielded a tougher PP blend.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work aims to use the Palierne emulsion type model to describe the relationship between the rheological response to small amplitude oscillatory deformation and morphology of polypropylene/polyamide 6 (PP/PA6) blends compatibilized with maleic anhydride grafted polypropylene (PP-g-MAH). It was found that the Palierne emulsion type model could describe very well the linear viscoelastic responses of binary uncompatibilized PP/PA6 blends and failed to describe the ternary compatibilized PP/PP-g-MAH/PA6 blends. These features could be attributed to the fact that the morphology of the ternary blends was not of the emulsion type with the PA6 particles dispersed in the PP matrix but of an emulsion-in-emulsion type, i.e., PA6 particles dispersed in the PP matrix themselves contained PP or PP-g-MAH inclusions. By consideration of PP-in-PA6 particles as pure PA6 particles, where the volume fraction of the PA6 phase was increased accordingly, the Palierne emulsion type model could work very well for a ternary blending system. Preshear at low frequencies modified the morphology of both binary and ternary blends. The particles of the dispersed phase (PA6) became more uniform. These results suggested that the Palierne emulsion type model could be used to extract information on rheological properties and interfacial tension of polymer blends from known morphology and vice versa.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the morphology of blends of PA1010 and polypropylene (PP) compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA). It is found that the morphologies are dependent on the content of glycidyl methacrylate in PP-g-GMA and the mixing time. The size of the dispersed PP particles decreases as the content of GMA in the PP-g-GMA increases for binary blends of PA1010 and PP-g-GMA. Similar results are obtained for changing the mixing time. Ternary blends of PA1010, PP, and PP-g-GMA indicate that morphologies depend on the content of glycidyl metyacrylate in the PP-g-GMA and the miscibility of PP and PP-g-GMA. By changing the content of GMA in PP-g-GMA, it was possible to introduce significant changes of morphology. A matrix removal TEM method is used to investigate the interfacial structure of PA1010/PP blends containing PP-g-GMA as a compatibilizer. This technique shows the reaction product between PA1010 and PP-g-GMA to be located at interface as a surrounding layer around domain particles. SEM observation on the interface shows that the adhesion between PA1010 and pure PP is very weak and their interface boundary is sharp. For the samples of PA1010 and PP-g-GMA, it was found that the interface was not so obvious, and the reaction between PA1010 and PP-g-GMA strengthens the interface significantly. (C) 1997 Elsevier Science Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ductile-brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile-butadiene-styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate-co-maleic anhydride (MMA-MAH) and MMA-co-glycidyl methacrylate (MMA-GMA). The ductile-brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA-MAH compatibilizer were supertough and showed a ductile-brittle transition temperature at -10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA-GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ethylene-propylene diene terpolymer (EPDM) was functionalized with glycidyl methacrylate (GMA) during melt processing by free radical grafting with peroxide initiation in the presence and absence of a reactive comonomer trimethylolpropane triacrylate (Tris). Increasing the peroxide concentration resulted in an increase in the GMA grafting yield, albeit the overall grafting level was low and was accompanied by higher degree of crosslinking of EPDM which was found to be the major competing reaction. The presence of Tris in the grafting system gave rise to higher grafting yield produced at a much lower peroxide concentration though the crosslinking reactions remained high but without the formation of GMA-homopolymer in either of the two systems. The use of these functionalized EPDM (f-EPDM) samples with PET as compatibilisers in binary and ternary blends of PET/EPDM/f-EPDM was evaluated. The influence of the different functionalisation routes of the rubber phase (in presence and absence of Tris) and the effect of the level of functionality and microstructure of the resultant f-EPDM on the extent of the interfacial reaction, morphology and mechanical properties was also investigated. It is suggested that the mechanical properties of the blends are strongly influenced by the performance of the graft copolymer, which is in turn, determined by the level of functionality, molecular structure of the functionalized rubber and the interfacial concentration of the graft copolymer across the interface. The cumulative evidence obtained from torque rheometry, scanning electron microscopy, SEM, dynamic mechanical analysis (DMA), tensile mechanical tests and Fourier transform infrared (FTIR) supports this. It was shown that binary and ternary blends prepared with f-EPDM in the absence of Tris and containing lower levels of g-GMA effected a significant improvement in mechanical properties. This increase, particularly in elongation to break, could be accounted for by the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET that would result in a graft copolymer which could, most probably, preferentially locate at the interface, thereby acting as an 'emulsifier' responsible for decreasing the interfacial tension between the otherwise two immiscible phases. This is supported by results from FTIR analysis of the fractionated PET phase of these blends which confirm the formation of an interfacial reaction, DMA results which show a clear shift in the T s of the blend components and SEM results which reveal very fine morphology, suggesting effective compatibilisation that is concomitant with the improvement observed in their tensile properties. Although Tris has given rise to highest amount of g-GMA, it resulted in lower mechanical properties than the optimized blends produced in the absence of Tris. This was attributed to the difference in the microstructure of the graft and the level of functionality in these samples resulting in less favourable structure responsible for the coarser dispersion of the rubber phase observed by SEM, the lower extent of T shift of the PET phase (DMA), the lower height of the torque curve during reactive blending and FTIR analysis of the separated PET phase that has indicated a lower extent of the interfacial chemical reaction between the phases in this Tris-containing blend sample. © 2005 Elsevier Ltd. All rights reserved.