951 resultados para TENSION BAND
Resumo:
Background. A variety of techniques can be used to achieve stabilization of femoral valgus osteotomies in children, but what is lacking is a versatile fixation system that associates stability and versatility at different ages and for different degrees of deformity. Methods. Mechanical tests of three configurations used to fix femoral valgus osteotomies, based oil the tension band wire principle, were carried out. A 30 degrees wedge valgus osteotomy was performed at the subtrochanteric level in 60 swine femurs and fixed with three different systems. In Group 1, two Kirschner wires (K wire) were introduced from the tip of the greater trochanter to the medial cortex, crossing the osteotomy. A flexible steel wire was anchored to the K wires into holes in the lateral cortex and tightened to form a tension band. The same setup was used in Group 2, but two additional smooth K wires were inserted into the lateral surface of the greater trochanter and driven to the femoral head with the distal extremities bent and tied around tile bone shaft. In Group 3, the fixation was similar to that in Group 2, but tile ascending K wires were introduced below the osteotomy level, crossing the osteotonly. Mechanical tests in bending-compression and torsion were used to access the stability. Findings. The torsional relative stiffness was 116% greater for Group 3 (0.27 N m/degree) and no significant difference was found between Group 1 (0.10 N m/degree) and Group 2 (0.12 N m/degree). The average torque was 103% higher for Group 3 (1.86 N m). Stiffness in bending-compression was significantly higher in Group 3 (508 x 10(3) N/m) than in Group 1 (211 x 10(3) N/m) and Group 2 (219 x 10(3) N/m). Interpretation. Fixation as used in Group 3 was significantly more stable, both in torsion and bending-compression tests, than tile other two techniques. (c) 2007 Elsevier Ltd. All rights reserved.
Tension-band wiring of olecranon fractures - Biomechanical analysis of different fixation techniques
Resumo:
Tension-band wiring is a recognised standard treatment for fixation of olecranon fractures. The classical operation technique is well known and widespread among the orthopaedic surgeons. Nevertheless complications like K-wire migration or skin perforation and difficult technical as well as anatomical prerequisites require better-adapted operation fixation methods. In older female patients a cut through of the Kirschner wires with concomitant secondary displacement was observed. We intent to develop a new, better adapted operation technique for olecranon fractures in the old patients, in order to decrease complications and follow-up procedures. In this study we compare two different K-wire positions: 10 models of the classical AO tension-banding to 10 models with adapted K-wire insertion. In this group the K-wire passes from the tip of the olecranon to the posterior cortical of the distal fragment of the ulna. We tested maximal failure load, maximal opening angle as well as maximal work to achieve maximal force. In either technique we were able to determine different variables: a maximal failure load of more than 600N (p = 0.94) for both fixation methods and a maximal opening angle for both techniques of about 10° (p = 0.86). To achieve the maximal force our modified technique required a slightly increased work (p = 0.16). In this study no statistical significant differences between the two fixation techniques was shown. This leads to the conclusion that the modified version is comparable to the classical operation technique considering the stability, but due to the adaption of the angle in the modified procedure, less lesions of neurovascular structures on the volar side can be expected. To support our findings cadaver studies are needed for further investigations.
Resumo:
To evaluate patients with transverse fractures of the shaft of the humerus treated with indirect reduction and internal fixation with plate and screws through minimally invasive technique. Inclusion criteria were adult patients with transverse diaphyseal fractures of the humerus closed, isolated or not occurring within 15 days of the initial trauma. Exclusion criteria were patients with compound fractures. In two patients, proximal screw loosening occurred, however, the fractures consolidated in the same mean time as the rest of the series. Consolidation with up to 5 degrees of varus occurred in five cases and extension deficit was observed in the patient with olecranon fracture treated with tension band, which was not considered as a complication. There was no recurrence of infection or iatrogenic radial nerve injury. It can be concluded that minimally invasive osteosynthesis with bridge plate can be considered a safe and effective option for the treatment of transverse fractures of the humeral shaft. Level of Evidence III, Therapeutic Study.
Resumo:
Background: Rotational osteotomy is frequently indicated to correct excessive femoral anteversion in cerebral palsy patients. Angled blade plate is the standard fixation device used when performed in the proximal femur, but extensile exposure is required for plate accommodation. The authors developed a short locked intramedullary nail to be applied percutaneously in the fixation of femoral rotational osteotomies in children with cerebral palsy and evaluated its mechanical properties. Methods: The study was divided into three stages. In the first part, a prototype was designed and made based on radiographic measurements of the femoral medullary canal of ten-year-old patients. In the second, synthetic femoral models based on rapid-prototyping of 3D reconstructed images of patients with cerebral palsy were obtained and were employed to adjust the nail prototype to the morphological changes observed in this disease. In the third, rotational osteotomies were simulated using synthetic femoral models stabilized by the nail and by the AO-ASIF fixed-angle blade plate. Mechanical testing was done comparing both devices in bending-compression and torsion. Results: The authors observed proper adaptation of the nail to normal and morphologically altered femoral models, and during the simulated osteotomies. Stiffness in bending-compression was significantly higher in the group fixed by the plate (388.97 +/- 57.25 N/mm) than in that fixed by the nail (268.26 +/- 38.51 N/mm) as torsional relative stiffness was significantly higher in the group fixed by the plate (1.07 +/- 0.36 Nm/degrees) than by the nail (0.35 +/- 0.13 Nm/degrees). Conclusions: Although the device presented adequate design and dimension to fit into the pediatric femur, mechanical tests indicated that the nail was less stable than the blade plate in bending-compression and torsion. This may be a beneficial property, and it can be attributed to the more flexible fixation found in intramedullary devices.
Resumo:
Between January 1996 and July 2003, 93 consecutive patients operated on with a diagnosis of olecranon fractures were identified from our trauma unit files. Fourteen transolecranon fracture-dislocations were found after a retrospective X-radiographic evaluation. Eight patients were women and six were men, with a mean age of 54 years. There were 4 noncomminuted olecranon fractures, treated with K-wires and single tension-band wiring. The remaining 10 fractures were complex fractures, treated in 3 cases with multiple K-wires and single tension-band wiring, in 2 by use of one-third tubular plates, in 1 with a 3.5-mm dynamic compression plate, and in the remaining 4 with 3.5-mm reconstruction plates. Ligament repair was not performed in any case. Three patients needed reoperation because of early failure of primary fixation. Patients were reviewed at a mean follow-up of 3.6 years. Two reported difficulties in daily activities, none with any symptoms of elbow instability. According to the Broberg and Morrey score, 4 patients had excellent results, 6 had good results, 2 had fair results, and 2 had poor results. Four patients showed signs of degenerative arthritis on the radiographs obtained at follow-up. We conclude that transolecranon fracture-dislocation is an underreported and misdiagnosed injury. Various fixation techniques can restore the anatomic relationships and contour of the trochlear notch; the imperative goal is to obtain a good stable primary fixation and allow early active mobilization.
Resumo:
Suture materials in orthopaedic surgery are used for closure of wounds, repair of fascia, muscles, tendons, ligaments, joint capsules, and cerclage or tension band of certain fractures. The purpose of this study was to compare the biomechanical properties of eleven commonly used sutures in orthopaedic surgery. Three types of braided non-absorbable and one type of braided absorbable suture material with different calibers (n=77) underwent biomechanical testing for maximum load to failure, strain, and stiffness. All samples were tied by one surgeon with a single SMC (Seoul Medical Center) knot and three square knots. The maximum load to failure and strain were highest for #5 FiberWire and lowest for #0 Ethibond Excel (p<0.001). The stiffness was highest for #5 FiberWire and lowest for #2-0 Vicryl (p<0.001). In all samples, the failure of the suture material occurred at the knot There was no slippage of the knot in any of the samples tested. This data will assist the orthopaedic surgeon in selection and application of appropriate suture materials and calibers to specific tasks.
Resumo:
HYPOTHESIS We hypothesized that arthroscopic rotator cuff repairs using leukocyte- and platelet-rich fibrin (L-PRF) in a standardized, modified protocol is technically feasible and results in a higher vascularization response and watertight healing rate during early healing. METHODS Twenty patients with chronic rotator cuff tears were randomly assigned to 2 treatment groups. In the test group (N = 10), L-PRF was added in between the tendon and the bone during arthroscopic rotator cuff repair. The second group served as control (N = 10). They received the same arthroscopic treatment without the use of L-PRF. We used a double-row tension band technique. Clinical examinations including subjective shoulder value, visual analog scale, Constant, and Simple Shoulder Test scores and measurement of the vascularization with power Doppler ultrasonography were made at 6 and 12 weeks. RESULTS There have been no postoperative complications. At 6 and 12 weeks, there was no significant difference in the clinical scores between the test and the control groups. The mean vascularization index of the surgical tendon-to-bone insertions was always significantly higher in the L-PRF group than in the contralateral healthy shoulders at 6 and 12 weeks (P = .0001). Whereas the L-PRF group showed a higher vascularization compared with the control group at 6 weeks (P = .001), there was no difference after 12 weeks of follow-up (P = .889). Watertight healing was obtained in 89% of the repaired cuffs. DISCUSSION/CONCLUSIONS Arthroscopic rotator cuff repair with the application of L-PRF is technically feasible and yields higher early vascularization. Increased vascularization may potentially predispose to an increased and earlier cellular response and an increased healing rate.
Resumo:
BACKGROUND Trans-olecranon chevron osteotomies (COs) remain the gold standard surgical approach to type C fractures of the distal humerus. This technique is associated with a high complication rate and development of an extra-articular olecranon osteotomy may be advantageous. The aim of this study was to compare the load to failure of COs with extra-articular oblique osteotomies (OOs) as well as modified, extra-articular step osteotomies (SOs). METHODS These three osteotomies and their subsequent fixation utilizing a standardized tension band wiring technique were tested in 42 composite analog ulnae models at 20° and 70° of flexion. Triceps loading was simulated with a servo hydraulic testing machine. All specimens were isometrically loaded until failure. Kinematic and force data, as well as interfragmentary motion were recorded. RESULTS At 70°, CO failed at a mean load of 963N (SD 104N), the OO at 1512N (SD 208N) and the SO at 1484N (SD 153N), (P<0.001). At 20°, CO failed at a mean load of 707N (SD 104N) and OO at 1009N (SD 85N) (P=0.006). The highest load to failure was observed for the SO, which was 1277N (SD 172N). The load to failure of the SO was significantly higher than the CO as well as the OO. CONCLUSION Extra-articular osteotomies showed a significantly higher load to failure in comparison to traditional CO. At near full extension (20° of flexion), this biomechanical advantage was further enhanced by a step-cut modification of the extra-articular oblique osteotomy.
Resumo:
Load-induced extravascular fluid flow has been postulated to play a role in mechanotransduction of physiological loads at the cellular level. Furthermore, the displaced fluid serves as a carrier for metabolites, nutrients, mineral precursors and osteotropic agents important for cellular activity. We hypothesise that load-induced fluid flow enhances the transport of these key substances, thus helping to regulate cellular activity associated with processes of functional adaptation and remodelling. To test this hypothesis, molecular tracer methods developed previously by our group were applied in vivo to observe and quantify the effects of load-induced fluid flow under four-point-bending loads. Preterminal tracer transport studies were carried out on 24 skeletally mature Sprague Dawley rats. Mechanical loading enhanced the transport of both small- and larger-molecular-mass tracers within the bony tissue of the tibial mid-diaphysis. Mechanical loading showed a highly significant effect on the number of periosteocytic spaces exhibiting tracer within the cross section of each bone. For all loading rates studied, the concentration of Procion Red tracer was consistently higher in the tibia subjected to pure bending loads than in the unloaded, contralateral tibia, Furthermore, the enhancement of transport was highly site-specific. In bones subjected to pure bending loads, a greater number of periosteocytic spaces exhibited the presence of tracer in the tension band of the cross section than in the compression band; this may reflect the higher strains induced in the tension band compared with the compression band within the mid-diaphysis of the rat tibia. Regardless of loading mode, the mean difference between the loaded side and the unloaded contralateral control side decreased with increasing loading frequency. Whether this reflects the length of exposure to the tracer or specific frequency effects cannot be determined by this set of experiments. These in vivo experimental results corroborate those of previous ex vivo and in vitro studies, Strain-related differences in tracer distribution provide support for the hypothesis that load-induced fluid flow plays a regulatory role in processes associated with functional adaptation.
Resumo:
ABSTRACTScarlet Morning Glory is considered to be an infesting weed that affects several crops and causes serious damage. The application of chemical herbicides, which is the primary control method, requires a broad knowledge of the various characteristics of the solution and application technology for a more efficient phytosanitary treatment. Therefore this study aimed to characterize the effect of rainfall incidence on the control of Ipomoea hederifolia, considering droplet size, surface tension, contact angle of droplets formed by herbicides liquid on vegetal and artificial surfaces, associated to adjuvants and the volumetric distribution profile of the spray jet. The addition of the adjuvants to the herbicide spraying liquid improved the application quality, as it influenced the angle formed by the spray by broadening the deposition band of the spray nozzle and thus the possible distance between the nozzles on spray boom and due the changes at droplet size, which contribute to a safety application. The rainfall occurrence affected negatively the weed control with the different spraying liquids and also the dry matter weight, suggesting that the phytosanitary product applied was washed off.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B) of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5). RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20) for PU-1, 347.90 MPa (SD=109.54) for PU-2 and 304.64 MPa (SD=25.48) for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.
Resumo:
Temperature-dependent electrical resistance in quasi-one-dimensional Li(0.9)Mo(6)O(17) is described by two Luttinger liquid anomalous exponents alpha, each associated with a distinct one dimensional band. The band with alpha < 1 is argued to crossover to a higher dimension below the temperature T(M'), leading to superconductivity. Disorder and magnetic fields are shown to induce the Bose metal behavior in this bulk compound.
Resumo:
We obtained new Fabry-Perot data cubes and derived velocity fields, monochromatic, and velocity dispersion maps for 28 galaxies in the Hickson compact groups 37, 40, 47, 49, 54, 56, 68, 79, and 93. We also derived rotation curves for 9 of the studied galaxies, 6 of which are strongly asymmetric. Combining these new data with previously published 2D kinematic maps of compact group galaxies, we investigated the differences between the kinematic and morphological position angles for a sample of 46 galaxies. We find that one third of the unbarred compact group galaxies have position angle misalignments between the stellar and gaseous components. This and the asymmetric rotation curves are clear signatures of kinematic perturbations, probably because of interactions among compact group galaxies. A comparison between the B-band Tully-Fisher relation for compact group galaxies and for the GHASP field-galaxy sample shows that, despite the high fraction of compact group galaxies with asymmetric rotation curves, these lay on the TF relation defined by galaxies in less dense environments, although with more scatter. This agrees with previous results, but now confirmed for a larger sample of 41 galaxies. We confirm the tendency for compact group galaxies at the low-mass end of the Tully-Fisher relation (HCG 49b, 89d, 96c, 96d, and 100c) to have either a magnitude that is too bright for its mass (suggesting brightening by star formation) and/or a low maximum rotational velocity for its luminosity (suggesting tidal stripping). These galaxies are outside the Tully Fisher relation at the 1 sigma level, even when the minimum acceptable values of inclinations are used to compute their maximum velocities. Including such galaxies with nu < 100 km s(-1) in the determination of the zero point and slope of the compact group B-band Tully-Fisher relation would strongly change the fit, making it different from the relation for field galaxies, which has to be kept in mind when studying scaling relations of interacting galaxies, especially at high redshifts.
Resumo:
We use the density functional theory/local-density approximation (DFT/LDA)-1/2 method [L. G. Ferreira , Phys. Rev. B 78, 125116 (2008)], which attempts to fix the electron self-energy deficiency of DFT/LDA by half-ionizing the whole Bloch band of the crystal, to calculate the band offsets of two Si/SiO(2) interface models. Our results are similar to those obtained with a ""state-of-the-art"" GW approach [R. Shaltaf , Phys. Rev. Lett. 100, 186401 (2008)], with the advantage of being as computationally inexpensive as the usual DFT/LDA. Our band gap and band offset predictions are in excellent agreement with experiments.
Resumo:
The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.