997 resultados para TEMPERATURE DIAGNOSTICS
Resumo:
In this study we calculate the electron-impact uncertainties in atomic data for direct ionization and recombination and investigate the role of these uncertainties on spectral diagnostics. We outline a systematic approach to assigning meaningful uncertainties that vary with electron temperature. Once these uncertainty parameters have been evaluated, we can then calculate the uncertainties on key diagnostics through a Monte Carlo routine, using the Astrophysical Emission Code (APEC) [Smith et al. 2001]. We incorporate these uncertainties into well known temperature diagnostics, such as the Lyman alpha versus resonance line ratio and the G ratio. We compare these calculations to a study performed by [Testa et al. 2004], where significant discrepancies in the two diagnostic ratios were observed. We conclude that while the atomic physics uncertainties play a noticeable role in the discrepancies observed by Testa, they do not explain all of them. This indicates that there is another physical process occurring in the system that is not being taken into account. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.
Resumo:
A detailed investigation of plasma screening effects on atomic structure and transition properties are presented for He-like ions embedded in dense plasma environment. Multi-configuration Dirac-Fock calculations were carried out for these ions by considering a Debye-Huckel potential. A large-scale relativistic configuration-interaction method is adopted to calculate transition energies and transition probabilities and to allow for a systematic improvement of the calculations. Comparison of the presently calculated results with others, when available, is made.
Resumo:
Emission lines of Be-like ions are frequently observed in astrophysical plasmas, and many are useful for density and temperature diagnostics. However, accurate atomic data for energy levels, radiative rates (A-values) and effective electron excitation collision strengths ($\Upsilon$) are required for reliable plasma modelling. In general it is reasonably straightforward to calculate energy levels and A- values to a high level of accuracy. By contrast, considerable effort is required to calculate $\Upsilon$, and hence it is not always possible to assess the accuracy of available data. Recently, two independent calculations (adopting the $R$-matrix method) but with different approaches (DARC and ICFT) have appeared for a range of Be-like ions. Therefore, in this work we compare the two sets of $\Upsilon$, highlight the large discrepancies for a significant number of transitions and suggest possible reasons for these.
Resumo:
The classic vertical advection-diffusion (VAD) balance is a central concept in studying the ocean heat budget, in particular in simple climate models (SCMs). Here we present a new framework to calibrate the parameters of the VAD equation to the vertical ocean heat balance of two fully-coupled climate models that is traceable to the models’ circulation as well as to vertical mixing and diffusion processes. Based on temperature diagnostics, we derive an effective vertical velocity w∗ and turbulent diffusivity k∗ for each individual physical process. In steady-state, we find that the residual vertical velocity and diffusivity change sign in mid-depth, highlighting the different regional contributions of isopycnal and diapycnal diffusion in balancing the models’ residual advection and vertical mixing. We quantify the impacts of the time-evolution of the effective quantities under a transient 1%CO2 simulation and make the link to the parameters of currently employed SCMs.
Resumo:
A low temperature polyol process, based on glycolaldehyde mediated partial reduction of FeCl3 center dot 6H(2)O at 120 degrees C in the presence of sodium acetate as an alkali source and 2,2'-(ethylenedioxy)-bis-(ethylamine) as an electrostatic stabilizer has been used for the gram-scale preparation of biocompatible, water-dispersible, amine functionalized magnetite nanoparticles (MNPs) with an average diameter of 6 +/- 0.75 nm. With a reasonably high magnetization (37.8 e.m.u.) and amine groups on the outer surface of the nanoparticles, we demonstrated the magnetic separation and concentration implications of these ultrasmall particles in immunoassay. MRI studies indicated that these nanoparticles had the desired relaxivity for T-2 contrast enhancement in vivo. In vitro biocompatibility, cell uptake and MR imaging studies established that these nanoparticles were safe in clinical dosages and by virtue of their ultrasmall sizes and positively charged surfaces could be easily internalized by cancer cells. All these positive attributes make these functional nanoparticles a promising platform for further in vitro and in vivo evaluations.
Resumo:
There has been a recent rapid expansion of the range of applications of low-temperature plasma processing in Si-based photovoltaic (PV) technologies. The desire to produce Si-based PV materials at an acceptable cost with consistent performance and reproducibility has stimulated a large number of major research and research infrastructure programs, and a rapidly increasing number of publications in the field of low-temperature plasma processing for Si photovoltaics. In this article, we introduce the low-temperature plasma sources for Si photovoltaic applications and discuss the effects of low-temperature plasma dissociation and deposition on the synthesis of Si-based thin films. We also examine the relevant growth mechanisms and plasma diagnostics, Si thin-film solar cells, Si heterojunction solar cells and silicon nitride materials for antireflection and surface passivation. Special attention is paid to the low-temperature plasma interactions with Si materials including hydrogen interaction, wafer cleaning, masked or mask-free surface texturization, the direct formation of p-n junction, and removal of phosphorus silicate glass or parasitic emitters. The chemical and physical interactions in such plasmas with Si surfaces are analyzed. Several examples of the plasma processes and techniques are selected to represent a variety of applications aimed at the improvement of Si-based solar cell performance. © 2014 Elsevier B.V.
Resumo:
This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.
Resumo:
Catalytic probes are used for plasma diagnostics in order to quantify the density of neutral atoms. The probe response primarily depends on the probe material and its surface morphology. Here we report on the design, operation and modelling of the response of niobium pentoxide sensors with a flat and nanowire (NW) surfaces. These sensors were used to detect neutral oxygen atoms in the afterglow region of an inductively coupled rf discharge in oxygen. A very different response of the flat-surface and NW probes to the varying densities of oxygen atoms was explained by modelling heat conduction and taking into account the associated temperature gradients. It was found that the nanostructure probe can measure in a broader range than the flat oxide probe due to an increase in the surface to volume ratio, and the presence of nanostructures which act as a thermal barrier against sensor overheating. These results can be used for the development of the new generation of catalytic probes for gas/discharge diagnostics in a range of industrial and environmental applications.
Resumo:
Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.
Resumo:
A fuzzy system is developed using a linearized performance model of the gas turbine engine for performing gas turbine fault isolation from noisy measurements. By using a priori information about measurement uncertainties and through design variable linking, the design of the fuzzy system is posed as an optimization problem with low number of design variables which can be solved using the genetic algorithm in considerably low amount of computer time. The faults modeled are module faults in five modules: fan, low pressure compressor, high pressure compressor, high pressure turbine and low pressure turbine. The measurements used are deviations in exhaust gas temperature, low rotor speed, high rotor speed and fuel flow from a base line 'good engine'. The genetic fuzzy system (GFS) allows rapid development of the rule base if the fault signatures and measurement uncertainties change which happens for different engines and airlines. In addition, the genetic fuzzy system reduces the human effort needed in the trial and error process used to design the fuzzy system and makes the development of such a system easier and faster. A radial basis function neural network (RBFNN) is also used to preprocess the measurements before fault isolation. The RBFNN shows significant noise reduction and when combined with the GFS leads to a diagnostic system that is highly robust to the presence of noise in data. Showing the advantage of using a soft computing approach for gas turbine diagnostics.
Resumo:
The characteristics of the high pressure oxygen-sputtering plasma in the pressure range 0.8–2.4 mbar have been studied using the Langmuir probe technique. The variation in plasma parameters such as positive ion density, electron density, mean electron energy and floating potential with pressure and temperature has been investigated. It has been observed that the positive ion density increases at high substrate temperatures whereas the negative ion density decreases. The study of the variation in mean electron energy and floating potential also indicated the possibility that the number of negative ions is less when the substrates are at elevated temperatures. Since the negative ions are supposed to cause re-sputtering and make the films off-stoichiometric, the reduction in the negative ion density as observed at elevated substrate temperatures is better suited for depositing stoichiometric YBa2Cu3O7−δ superconducting thin films.
Resumo:
Measured health signals incorporate significant details about any malfunction in a gas turbine. The attenuation of noise and removal of outliers from these health signals while preserving important features is an important problem in gas turbine diagnostics. The measured health signals are a time series of sensor measurements such as the low rotor speed, high rotor speed, fuel flow, and exhaust gas temperature in a gas turbine. In this article, a comparative study is done by varying the window length of acausal and unsymmetrical weighted recursive median filters and numerical results for error minimization are obtained. It is found that optimal filters exist, which can be used for engines where data are available slowly (three-point filter) and rapidly (seven-point filter). These smoothing filters are proposed as preprocessors of measurement delta signals before subjecting them to fault detection and isolation algorithms.
Resumo:
A new method for measuring the density, temperature and velocity of N2 gas flow by laser induced biacetyl phosphorescence is proposed. The characteristics of the laser induced phosphorescence of biacetyl mixed with N2 are investigated both in static gas and in one-dimensional flow along a pipe with constant cross section. The theoretical and experimental investigations show that the temperature and density of N2 gas flow could be measured by observing the phosphorescence lifetime and initial intensity of biacetyl triplet (3Au) respectively. The velocity could be measured by observing the time-of-flight of the phosphorescent gas after pulsed laser excitation. The prospect of this method is also discussed.
Resumo:
Two of the most important questions in mantle dynamics are investigated in three separate studies: the influence of phase transitions (studies 1 and 2), and the influence of temperature-dependent viscosity (study 3).
(1) Numerical modeling of mantle convection in a three-dimensional spherical shell incorporating the two major mantle phase transitions reveals an inherently three-dimensional flow pattern characterized by accumulation of cold downwellings above the 670 km discontinuity, and cylindrical 'avalanches' of upper mantle material into the lower mantle. The exothermic phase transition at 400 km depth reduces the degree of layering. A region of strongly-depressed temperature occurs at the base of the mantle. The temperature field is strongly modulated by this partial layering, both locally and in globally-averaged diagnostics. Flow penetration is strongly wavelength-dependent, with easy penetration at long wavelengths but strong inhibition at short wavelengths. The amplitude of the geoid is not significantly affected.
(2) Using a simple criterion for the deflection of an upwelling or downwelling by an endothermic phase transition, the scaling of the critical phase buoyancy parameter with the important lengthscales is obtained. The derived trends match those observed in numerical simulations, i.e., deflection is enhanced by (a) shorter wavelengths, (b) narrower up/downwellings (c) internal heating and (d) narrower phase loops.
(3) A systematic investigation into the effects of temperature-dependent viscosity on mantle convection has been performed in three-dimensional Cartesian geometry, with a factor of 1000-2500 viscosity variation, and Rayleigh numbers of 10^5-10^7. Enormous differences in model behavior are found, depending on the details of rheology, heating mode, compressibility and boundary conditions. Stress-free boundaries, compressibility, and temperature-dependent viscosity all favor long-wavelength flows, even in internally heated cases. However, small cells are obtained with some parameter combinations. Downwelling plumes and upwelling sheets are possible when viscosity is dependent solely on temperature. Viscous dissipation becomes important with temperature-dependent viscosity.
The sensitivity of mantle flow and structure to these various complexities illustrates the importance of performing mantle convection calculations with rheological and thermodynamic properties matching as closely as possible those of the Earth.