999 resultados para TEMPERATE ESTUARY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatio-temporal variations in the physicochemical and biological parameters in the Morlaix estuary on the Brittany coast of France were studied. Hydrographically, the estuary can be classified into 3 segments: the upper estuary where stratification always persists, the lower estuary where vertical homogeneity is permanent, and a middle estuary where there is a regular oscillation of stratification and homogeneity during every tidal cycle, stratification being associated with slack waters and homogeneity, with ebb and flood. Nitrogen pollution in the estuary is very intense.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates, and growth efficiencies were studied in the Northern region of the Cananeia-Iguape estuarine system, which has recently experienced an intense eutrophication due to anthropogenic causes. Two surveys were carried out during spring and neap tide periods of the dry season of 2005 and the rainy season of 2006. This region receives large freshwater inputs with organic seston and phosphate concentrations that reach as high as 1.0 mg l(-1) and 20.0 mu M, respectively. Strong decreasing gradients of seston and dissolved inorganic nutrients were observed from the river/estuary boundary to the estuary/coastal interface. Gradients were also observed in phytoplankton and bacterial production rates. The production rates of phytoplankton were 5.6-fold higher (mean 8.5 mu g Cl(-1) h(-1)) during the dry season. Primary production rates (PP) positively correlated with salinity and euphoric depth, indicating that phytoplankton productivity was light-limited. On the other hand, bacterial biomass (BB) and production rates (BP) were 1.9- and 3.7-fold higher, respectively, during the rainy season, with mean values of up to 40.4 mu g Cl(-1) and 7.9 mu g Cl(-1) h-1, respectively. Despite such a high BP, bacterial abundance remained <2 x 106 cells ml(-1), indicating that bacterial production and removal were coupled. Mean specific growth rates ranged between 0.9 and 5.5 d(-1). BP was inversely correlated with salinity and positively correlated with temperature, organic matter, exopolymer particles, and particulate-attached bacteria; this last accounted for as much as 89.6% of the total abundance. During the rainy season, BP was generally much higher than PP, and values of BP/PP > 20 were registered during high freshwater input, suggesting that under these conditions, bacterial activity was predominantly supported by allochthonous inputs of organic carbon. In addition, BB probably represented the main pathway for the synthesis of high-quality (low C:N) biomass that may have been available to the heterotrophic components of the plankton food web, particularly nanoheterotrophs. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heterotrophic bacterial and biomass, production, specific growth rates and growth efficiencies were studied in July 2001 and January 2002 during both spring and neap tides, along a tidal cycle, at three sites in a subtropical estuary. Major freshwater inputs located in the Northern region led to differences in both and bacterioplankton biomass and activity along the estuary. While in the Northern region is light-limited, with mean production (PP) between 1.1 and 1.9 mu g C l(-1) h(-1) and mean specific growth rates (PSG) between 0.14 and 0.16 d(-1), the Southern region registered values as high as 24.7 mu g C l(-1) h(-1) for PP and 2.45 d(-1) (mean PP between 3.4 and 7.3 mu g C l(-1) h(-1); mean PSG between 0.28 and 0.57 d(-1)). On the other hand, maximum bacterial production (BP: 63.8 mu g C l(-1) h(-1)) and specific growth rate (BSG: 32.26 d(-1)) were observed in the Northern region (mean BP between 3.4 and 12.8 mu g C l(-1) h(-1); mean BSG between 1.98 and 6.67 day(-1)). These bacterial activity rates are among the highest recorded rates in estuarine and coastal waters, indicating that this system can be highly heterotrophic, due to high loads of allochthonous carbon (mainly derived from mangrove forest). Our results also showed that, despite that BP rates usually exceeded PP, in the Southern region BP may be partially supported (similar to 45%) by PP, since a significant regression was observed between BP and PP (r = 0.455, P < 0.001).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salt marshes are highly productive intertidal habitats that serve as nursery grounds for many commercially and economically important species. Because of their location and physical and biological characteristics, salt marshes are considered to be particularly vulnerable to anthropogenic inputs of oil hydrocarbons. Sediment contamination with oil is especially dangerous for salt marsh vegetation, since low molecular weight aromatic hydrocarbons can affect plants at all stages of development. However, the use of vegetation for bioremediation (phytoremediation), by removal or sequestration of contaminants, has been intensively studied. Phytoremediation is an efficient, inexpensive and environmental friendly approach for the removal of aromatic hydrocarbons, through direct incorporation by the plant and by the intervention of degrading microbial populations in the rhizosphere (microbe-assisted phytoremediation). Rhizosphere microbial communities are enriched in important catabolic genotypes for degradation of oil hydrocarbons (OH) which may have a potential for detoxification of the sediment surrounding the roots. In addition, since rhizosphere bacterial populations may also internalize into plant tissues (endophytes), rhizocompetent AH degrading populations may be important for in planta AH degradation and detoxification. The present study involved field work and microcosms experiments aiming the characterization of relevant plant-microbe interactions in oilimpacted salt marshes and the understanding of the effect of rhizosphere and endosphere bacteria in the role of salt marsh plants as potential phytoremediation agents. In the field approach, molecular tools were used to assess how plant species- and OH pollution affect sediment bacterial composition [bulk sediment and sediment surrounding the roots (rhizosphere) of Halimione portulacoides and Sarcocornia perennis subsp. perennis] in a temperate estuary (Ria de Aveiro, Portugal) chronically exposed to OH pollution. In addition, the 16S rRNA gene sequences retrieved in this study were used to generate in silico metagenomes and to evaluate the distribution of potential bacterial traits in different microhabitats. Moreover, a combination of culture-dependent and -independent approaches was used to investigate the effect of oil hydrocarbons contamination on the structure and function of endophytic bacterial communities of salt marsh plants.Root systems of H. portulacoides and S. perennis subsp. perennis appear to be able to exert a strong influence on bacterial composition and in silico metagenome analysis showed enrichment of genes involved in the process of polycyclic aromatic hydrocarbon (PAH) degradation in the rhizosphere of halophyte plants. The culturable fraction of endophytic degraders was essentially closely related to known OH-degrading Pseudomonas species and endophytic communities revealed sitespecific effects related to the level of OH contamination in the sediment. In order to determine the effects of oil contamination on plant condition and on the responses in terms of structure and function of the bacterial community associated with plant roots (rhizosphere, endosphere), a microcosms approach was set up. The salt marsh plant Halimione portulacoides was inoculated with a previous isolated Pseudomonas sp. endophytic degrader and the 2-methylnaphthalene was used as model PAH contaminant. The results showed that H. portulacoides health and growth were not affected by the contamination with the tested concentration. Moreover, the decrease of 2-methylnaphthalene at the end of experiment, can suggest that H. portulacoides can be considered as a potential plant for future uses in phytoremedition approaches of contaminated salt marsh. The acceleration of hydrocarbon degradation by inoculation of the plants with the hydrocarbon-degrading Pseudomonas sp. could not, however, be demonstrated, although the effects of inoculation on the structure of the endophytic community observed at the end of the experiment indicate that the strain may be an efficient colonizer of H. portulacoides roots. The results obtained in this work suggest that H. portulacoides tolerates moderate concentrations of 2-methylnaphthalene and can be regarded as a promising agent for phytoremedition approaches in salt marshes contaminated with oil hydrocarbons. Plant/microbe interactions may have an important role in the degradation process, as plants support a diverse endophytic bacterial community, enriched in genetic factors (genes and plasmids) for hydrocarbon degradation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coarse-resolution thematic maps derived from remotely sensed data and implemented in GIS play an important role in coastal and marine conservation, research and management. Here, we describe an approach for fine-resolution mapping of land-cover types using aerial photography and ancillary GIs and ground data in a large (100 x 35 km) subtropical estuarine system (Moreton Bay, Queensland, Australia). We have developed and implemented a classification scheme representing 24 coastal (subtidal, intertidal. mangrove, supratidal and terrestrial) cover types relevant to the ecology of estuarine animals, nekton and shorebirds. The accuracy of classifications of the intertidal and subtidal cover types, as indicated by the agreement between the mapped (predicted) and reference (ground) data, was 77-88%, depending on the zone and level of generalization required. The variability and spatial distribution of habitat mosaics (landscape types) across the mapped environment were assessed using K-means clustering and validated with Classification and Regression Tree models. Seven broad landscape types could be distinguished and ways of incorporating the information on landscape composition into site-specific conservation and field research are discussed. This research illustrates the importance and potential applications of fine-resolution mapping for conservation and management of estuarine habitats and their terrestrial and aquatic wildlife. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estuaries are a transition zone for fresh and saline water and sediments, providing a range of ecosystem services for the local population, infrastructure and industries located in their environs. They are also governance transition zones where jurisdictions often overlap and focused attention is often lacking. As Australia’s population continues to expand, particularly in the south, estuaries are increasingly becoming popular locations for settlement due to their picturesque surrounds and accessibility for water-based activities. This results in expanding human and industry activities and pressures along estuaries and adjacent coastal settings impacting ecosystem service delivery. The absence of dedicated national and state estuary legislation in addition to decades of poor land and waterway management decisions paints a ‘doom and gloom’ picture for temperate southern Australian estuaries. Against this backdrop, there are number of estuary ‘bright spots’ where natural resource management bodies in strong partnership with local actors are moving forward in overcoming challenges to estuary conservation. Using case studies, this paper describes the key elements for effective estuary management that can lead to improved estuary health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extensive literature base worldwide demonstrates how spatial differences in estuarine fish assemblages are related to those in the environment at (bio)regional, estuary-wide or local (within-estuary) scales. Few studies, however, have examined all three scales, and those including more than one have often focused at the level of individual environmental variables rather than scales as a whole. This study has identified those spatial scales of environmental differences, across regional, estuary-wide and local levels, that are most important in structuring ichthyofaunal composition throughout south-western Australian estuaries. It is the first to adopt this approach for temperate microtidal waters. To achieve this, we have employed a novel approach to the BIOENV routine in PRIMER v6 and a modified global BEST test in an alpha version of PRIMER v7. A combination of all three scales best matched the pattern of ichthyofaunal differences across the study area (rho = 0.59; P = 0.001), with estuary-wide and regional scales accounting for about twice the variability of local scales. A shade plot analysis showed these broader-scale ichthyofaunal differences were driven by a greater diversity of marine and estuarine species in the permanently-open west coast estuaries and higher numbers of several small estuarine species in the periodically-open south coast estuaries. When interaction effects were explored, strong but contrasting influences of local environmental scales were revealed within each region and estuary type. A quantitative decision tree for predicting the fish fauna at any nearshore estuarine site in south-western Australia has also been produced. The estuarine management implications of the above findings are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The size and pace of change in meiofaunal assemblages suggest that meiofauna make excellent subjects for testing theories about how ecological communities change. A field experiment was performed in which the  abundance and composition of epibionts and meiofauna on natural,  transplanted and mimic pneumatophores were monitored over a 47 wk period. Meiofaunal density increased with growth of algal epibionts, both reaching maximum values after 24 wk, at the end of winter. At this time the assemblages from the 3 substrata were similar, although the combined abundances of meiofauna on transplants and mimics were only 28% of the average on natural pneumatophores. Meiofaunal abundance on all substrata decreased rapidly during spring as algal cover declined due to desiccation. Twenty-three species of nematode were recorded from mimics compared with 8 and 7 from transplants and pneumatophores, respectively. A temporal sequence of feeding groups occurred in the order of epigrowth feeders, deposit feeders, and omnivore/predators, with the latter 2 adding to rather than replacing earlier trophic groups. Scavengers were found only on natural pneumatophores. The turnover rates of nematode species between all census times were similar, peaking at 63%, but there was no trend in the turnover rates with time. We conclude that mimics are more suitable than transplanted pneumatophores for colonisation studies because of their greater persistence and more easily standardised surface area. Moreover, the composition of colonising assemblages on them closely resembled assemblages on natural pneumatophores at the time of peak meiofaunal abundance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The meiofauna of a mangrove forest in the River Barwon estuary was studied by means of surveys and field experiments. Distinctive assemblages of meiofauna were described from the sediment and pneumatophores of the ecosystem. Fine resolution of phytal habitats was demonstrated, and particular assemblages of meiofauna were characteristic within habitat provided by dominant epibionts. Distribution of the meiofauna within leaf litter revealed high turnover rates of nematodes, and some factors controlling detrital assemblages were assessed. The vertical profile of sedimentary meiofauna was examined, and changes in abundance were related to the tychopelagic habit of many taxa at high tide. Dispersal within the water column was confirmed by pelagic trapping, and colonisation of mimic pneumatophores was investigated. The amount of algal cover, effects of grazing by gastropods, and rugosity of the colonised surface were shown to influence meiofauna colonisation of mimic pneumatophores. Establishment and persistence of patchy distributions of meiofauna at scales of less than 10 m in an intertidal environment was demonstrated, and it was concluded that this was due to the dynamic nature of assemblages rather than their integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical resource- and the less studied ratio-dependent models of predator–prey relationships provide divergent predictions as to the sustained ecological effects of bottom-up forcing. While resource-dependent models, which consider only instantaneous prey density in modelling predator responses, predict community responses that are dependent on the number of trophic levels in a system, ratio-dependent models, which consider the number of prey per consumer, predict proportional increase in each level irrespective of chain length. The two models are only subtly different for systems with two or three trophic levels but in the case of four trophic levels, predict opposite effects of enrichment on primary producers. Despite the poor discriminatory power of tests of the models in systems with two or three trophic levels, field tests in estuarine and marine systems with four trophic levels have been notably absent. Sampling of phytoplankton, macroinvertebrates, invertebrate-feeding fishes, piscivorous fishes in Kooloonbung Creek, Hastings River estuary, eastern Australia, subject to over 20 years of sewage discharge, revealed increased abundances in all four trophic levels at the disturbed location relative to control sites. Increased abundance of phytoplankton at the disturbed site was counter to the predictions of resource-dependent models, which posit a reduction in the first trophic level in response to enrichment. By contrast, the increase in abundance of this first trophic level and the proportionality of increases in abundances of each of the four trophic groups to nitrogen loading provided strong support for ratio dependency. This first evidence of ratio dependence in an estuarine system with four trophic levels not only demonstrates the applicability of ecological theory which seeks to simplify the complexity of systems, but has implications for management. Although large nutrient inputs frequently induce mortality of invertebrates and fish, we have shown that smaller inputs may in fact enhance biomass of all trophic levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In intermittently open estuaries, the sources of organic matter sustaining benthic invertebrates are likely to vary seasonally, particularly between periods of connection and disconnection with the ocean and higher and lower freshwater flows. This study investigated the contribution of allochthonous and autochthonous primary production to the diet of representative invertebrate species using stable isotope analysis (SIA) during the austral summer and winter (2008, 2009) in an intermittently open estuary on the south-eastern coast of Australia. As the study was conducted towards the end of a prolonged period of drought, a reduced influence of freshwater/terrestrial organic matter was expected. Sampling was conducted along an estuarine gradient, including upper, middle and lower reaches and showed that the majority of assimilated organic matter was derived from autochthonous estuarine food sources. Additionally, there was an input of allochthonous organic matter, which varied along the length of the estuary, indicated by distinct longitudinal trends in carbon and nitrogen stable isotope signatures along the estuarine gradient. Marine seaweed contributed to invertebrate diets in the lower reaches of the estuary, while freshwater/terrestrial organic matter had increased influence in the upper reaches. Suspension-feeding invertebrates derived large parts of their diet from freshwater/terrestrial material, despite flows being greatly reduced in comparison with non-drought years.