4 resultados para TCPOBOP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gap junctional intercellular communication (GJIC) and connexin expression (Cx26 and Cx32) in mouse liver were studied after administration of 4-bis[2-(3,5 dichloropyridyloxy)]benzene (TCPOBOP), a phenobarbital-like enzyme inducer. Female C57BI/6 mice were administered TCPOBOP (5.8 mg/kg BW) and euthanized 0, 24, 48 and 72 hours later. Liver samples were snap frozen, or fixed in formalin, or submitted to GJIC analysis. The proliferating cell nuclear antigen (PCNA) immunohistochemistry and the Western blotting for Cx26 and Cx32 were performed. After 48 and 72 h of drug administration the liver-to-body weight ratio was increased 70% and 117% (p < 0.0001), respectively. There were temporal-dependent alterations in liver histopathology and a significant increase in cell proliferation was noted after 48h and sustained after 72h, though to a lesser extent (p < 0.0001). In addition. TCPOBOP administration induced apoptosis, which appeared to be time-dependent showing statistical significance only after 72h (p < 0.0001). Interestingly, a transient disruption by nearly 50% of GJIC capacity was detected after 48 h of drug ingestion, which recovered after 72 h (p = 0.003). These GJIC changes were due to altered levels of Cx26 and Cx32 in the livers of TCPOBOP-treated mice. We concluded that a single administration of TCPOBOP transiently disrupted the levels of GJIC due to decreased expression of connexins and increased apoptotic cell death in mouse liver. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Summary The transcription factor and proto-oncogene c-myc plays an important role in integrating many mitogenic signals within the cell. The consequences are both broad and varied and include the regulation of apoptosis, cellular differentiation, cellular growth and cell cycle progression. It is found to be mis-regulated in over 70% of all cancers, however, our knowledge about c-Myc remains limited and very little is known about its physiological role in mammalian development and in adulthood. We have addressed the physiological role of c-Myc in both the bone marrow and the liver of mice by generating adult c-myc flox/flox mice that lacked c-myc in either the bone marrow or the liver after conversion of the c-myc flox alleles into null alleles by the inducible Mx¬Cre transgene with polyI-polyC. In investigating the role of c-Myc in the haematopoietic system, we concentrated on the aspects of cellular proliferation, cellular differentiation and apoptosis. Mice lacking c-Myc develop anaemia between 3-8 weeks and all more differentiated cell types are severely depleted leading to death. However in addition to its role in driving proliferation in transient amplifying cells, we unexpectedly discovered a new role for c-Myc in controlling haematopoietic stem cell (HSC) differentiation. c-Myc deficient HSCs are able to proliferate normally in vivo. In addition, their differentiation into more committed progenitors is blocked. These cells expressed increased adhesion molecules, which possibly prevent HSCs from being released from the special stem cell supporting stromal niche cells with which they closely associate. Secondly we used the liver as a model system to address the role of c-Myc in cellular growth, meaning the increase in cell size, and also cellular proliferation. Our results revealed c-Myc to play no role in metabolic cellular growth following a period of fasting. Following treatment with the xenobiotic TCPOBOP, c-Myc deficient hepatocytes increased in cell size as control hepatocytes and could surprisingly proliferate albeit at a reduced rate demonstrating a c-Myc independent proliferation pathway to exist in parenchymal cells. However, following partial hepatectomy, in which two-thirds of the liver was removed, mutant livers were severely restricted in their regeneration capacity compared to control livers demonstrating that c-Myc is essential for liver regeneration. Résumé Le facteur de transcription et proto-oncogène c-myc joue un rôle important dans l'intégration de nombreux signaux mitogéniques dans la cellule. Les conséquences de son activation sont étendues et variées et incluent la régulation de l'apoptose, de la différenciation, de la croissance et de la progression du cycle cellulaire. Même si plus de 20% des cancers montrent une dérégulation de c-myc, les connaissances sur ce facteur de transcription restent limitées et ses rôles physiologiques au cours du développement et chez l'adulte sont très peu connus. Nous avons étudié le rôle physiologique de c-Myc dans la molle osseuse et le foie murin en générant des souris adultes c-myc flox/flox. Dans ces souris, les allèles c-myc flox sont convertis en allèles nuls par le transgène Mx-Cre après induction avec du Poly-I.C. Pour notre étude du rôle de c-Myc dans le système hématopoiétique, nous nous sommes concentrés sur les aspects de la prolifération et de la différenciation cellulaire, ainsi que sur l'apoptose. Les souris déficientes pour c-Myc développent une anémie 3 à 8 semaines après la délétion du gène; tous les différents types cellulaires matures sont progressivement épuisés ce qui entraîne la mort des animaux. Néanmoins, outre sa capacité à induire la prolifération des cellules transitoires de la molle osseuse, nous avons inopinément découvert un nouveau rôle pour c-Myc dans le contrôle de la différenciation des cellules souches hématopoiétiques (HSC). Les HSC déficientes pour c-Myc prolifèrent normalement in vivo mais leur différenciation en progéniteurs plus engagés dans une voie de différenciation est bloquée. Ces cellules surexpriment certaines molécules d'adhésion ce qui empêcherait les HSC d'être relachées du stroma spécialisé, ou niche, auquel elles sont étroitement associées. D'autre part, nous avons utilisé le foie comme système modèle pour étudier le rôle de c-Myc dans la prolifération et dans la croissance cellulaire, c'est à dire l'augmentation de taille des cellules. Nos résultats ont révélé que c-Myc ne joue pas de rôle dans le métabolisme cellulaire qui suit une période de jeûne. L'augmentation de la taille cellulaire des hépatocytes déficients pour c-Myc suite au traitement avec l'agent xénobiotique TCPOBOP est identique à celle observée pour les cellules de contrôle. Le taux de prolifération des hépatocytes mutants est par contre réduit, indiquant qu'une voie de différenciation indépendante de c-Myc existe dans les cellules parenchymales. Néanmoins, après hépatectomie partielle, où deux-tiers du foie sont éliminés chirurgicalement, les foies mutants sont sévèrement limités dans leur capacité de régénération par rapport aux foies de contrôle, montrant ainsi que c-Myc est essentiel pour la régénération hépatique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human cytochrome P450 3A4 (CYP3A4), the predominant but variably expressed cytochrome P450 in adult liver and small intestine is involved in the metabolism of over 50% of currently used drugs. Its paralog CYP3A5 plays a crucial role in the disposition of several drugs with low therapeutic index, including tacrolimus. Limited information is available for the CYP3A5 transcriptional regulation and its induction by xenobiotics remains controversial. In the first part of this study, we analysed the CYP3A5 transcriptional regulation and its induction by xenobiotics in vivo using transgenic mice. To this end, two transgenic strains were established by pronuclear injection of a plasmid, expressing firefly luciferase driven by a 6.2 kb of the human CYP3A5 promoter. A detailed analysis of both strains shows a tissue distribution largely reflecting that of CYP3A5 transcripts in humans. Thus, the highest luciferase activity was detected in the small intestine, followed by oesophagus, testis, lung, adrenal gland, ovary, prostate and kidney. However, no activity was observed in the liver. CYP3A5-luc transgenic mice were similarly induced in both sexes with either PCN or TCPOBOP in small intestine in a dose-dependent manner. Thus, the 6.2 kb upstream promoter of CYP3A5 mediates the broad tissue activity in transgenic mice. CYP3A5 promoter is inducible in the small intestine in vivo, which may contribute to the variable expression of CYP3A in this organ. rnThe hepato-intestinal level of the detoxifying oxidases CYP3A4 and CYP3A5 is adjusted to the xenobiotic exposure mainly via the xenosensor and transcriptional factor PXR. CYP3A5 is additionally expressed in several other organs lacking PXR, including kidney. In the second part of this study, we investigated the mechanism of the differential expression of CYP3A5 and CYP3A4 and its evolutionary origin using renal and intestinal cells, and comparative genomics. For this examination, we established a two-cell line models reflecting the expression relationships of CYP3A4 and CYP3A5 in the kidney and small intestine in vivo. Our data demonstrate that the CYP3A5 expression in renal cells was enabled by the loss of a suppressing Yin Yang 1 (YY1)-binding site from the CYP3A5 promoter. This allowed for a renal CYP3A5 expression in a PXR-independent manner. The YY1 element is retained in the CYP3A4 gene, leading to its suppression, perhaps via interference with the NF1 activity in renal cells. In intestinal cells, the inhibition of CYP3A4 expression by YY1 is abrogated by a combined activating effect of PXR and NF1 acting on their respective response elements located adjacent to the YY1-binding site on CYP3A4 proximal promoter. CYP3A4 expression is further facilitated by a point mutation attenuating the suppressing effect of YY1 binding site. The differential expression of CYP3A4 and CYP3A5 in these organs results from the loss of the YY1 binding element from the CYP3A5 promoter, acting in concert with the differential organ expression of PXR, and with the higher accumulation of PXR response elements in CYP3A4. rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eine der Hauptursachen für unerwünschte oder reduzierte Wirkungen von Medikamenten ist die Induktion von Enzymen und Transportern des Medikamentenstoffwechsels. Diese Induktion stellt ursprünglich eine physiologische Reaktion auf die Aufnahme von potentiell schädlichen Fremdstoffen aus der Umwelt dar und sichert so die Gesundheit und Fortpflanzungsfähigkeit von Lebewesen. Beim Menschen sowie anderen Säugetieren werden Fremdstoffe hauptsächlich von den nukleären Rezeptoren PXR und CAR in der Leber und im Dünndarm detektiert. Zu den Medikamenten, welche über PXR und CAR wirken, gehören unter anderem Antikonvulsiva, Statine, antiretrovirale Medikamente, Glucocorticoide sowie Antimykotika. Die durch Fremdstoffe aktivierten Transkriptionsfaktoren PXR und CAR steigern die Menge der Enzyme und Transporter des Fremdstoffmetabolismus. Hierzu zählen vor allem die Cytochrom P450-Enzyme (Cyp-Enzyme) mit breitem Substratspektrum oder der Transporter MDR1, welcher eine Vielzahl von Substraten über Membranen transportiert. Durch die Biotransformation werden die induzierenden, lipophilen Substanzen so modifiziert, dass sie leichter über den Urin oder die Galle ausgeschieden werden können. \r\nDie Dauer der Induktion sollte auf die Zeit der Fremdstoffexposition beschränkt sein, um Störungen des endogenen Stoffwechsels zu vermindern. In dieser Arbeit werden jedoch Hinweise auf dauerhafte und sogar generationsübergreifende Effekte von Medikamenten in Mäusen geliefert. Nachkommen von Müttern, welche bereits vor ihrer Verpaarung einmalig mit TCPOBOP, einem Liganden des murinen CAR, injiziert wurden, hatten eine ungefähr 100-fach gesteigerte Genexpression von Cyp2b10. Auch gab es Expressionsänderungen von Genen, deren Produkte eine Rolle im Lipidstoffwechsel sowie bei Immunkrankheiten spielen. Eine Hochdurchsatz-RNA-Sequenzierung der injizierten Elterngeneration ergab außerdem dauerhafte Expressionsveränderungen anderer Gene des Medikamentenstoffwechsels sowie von Genen mit Verbindung zum Energiemetabolismus. \r\nBerücksichtigt man die enge evolutionäre Verwandtschaft der nukleären Rezeptoren CAR und PXR, sind Langzeitveränderungen auch für PXR möglich und wurden im Verlauf dieser Arbeit ebenfalls untersucht. Eine Hochdurchsatz-Sequenzierung ergab für Mäuse, welche mit dem PXR-Aktivator PCN induziert wurden, dass selbst noch drei Monate nach der Exposition Gene verändert exprimiert waren, welche im Zusammenhang mit Lebernekrosen stehen. Bei Nachkommen von PCN-injizierten Müttern wurden Gene unterschiedlich exprimiert, welche eine Rolle bei der Energiehomöostase sowie im Glukosestoffwechsel spielen. Im Erwachsenenalter sind bei diesen Nachkommen darüber hinaus noch Gene unterschiedlich exprimiert, deren Produkte eine Funktion in der Immunantwort haben. \r\nDa Erwachsene aufgrund ihrer Lebensdauer sowie der absoluten Krankheitshäufigkeit wesentlich öfter Kontakt mit Fremdstoffen haben, war medizinisch von besonderem Interesse, ob anhaltende Genexpressionsänderungen auch bei Erwachsenen zu beobachten sind. So konnte im Rahmen dieser Arbeit gezeigt werden, dass auch einmalig exponierte Adulttiere Gene dauerhaft verändert exprimieren und die Veränderungen im Medikamentenstoffwechsel an die nächste Generation übertrugen. \r\n\r\nBisher sind klinische Studien zur Risikobewertung von Medikamenten (Pharmakovigilanz) nicht generationsübergreifend angelegt. Diese Arbeit gibt Anstöße dafür, dass dies in Zukunft für viel mehr Medikamente notwendig werden könnte. Neben Veränderungen im Medikamentenstoffwechsel ergeben sich Nebenwirkungen von PXR- und CAR-Liganden vor allem aus ihrer Beteiligung an endogenen Stoffwechselwegen. Nach Aktivierung von CAR, welcher viele metabolische Stoffwechselwege steuert, treten beispielsweise Störungen des Energiestoffwechsels auf. Ein tieferes Verständnis der Rezeptoraktivität von CAR samt einer gezielten Modulierung seiner Aktivität würde wichtige Beiträge zum Verständnis der Regulation des Fremdstoffmetabolismus sowie der Entstehung von Nebenwirkungen durch eine Behandlung mit CAR-Liganden leisten. Dauerhafte Veränderungen endogener Stoffwechselwege könnten dann möglicherweise über eine pharmakologische Modulierung der CAR-Aktivität reduziert werden. \r\nZu diesem Zweck wurden im Verlauf dieser Arbeit die CAR-Rezeptoren der Amphibien (Xenopus tropicalis, Xenopus laevis) und Reptilien (Anolis carolinensis) erstmals kloniert, als Proteine exprimiert und charakterisiert. Vergleiche zwischen Tierarten ermöglichen ein besseres Verständnis von humanen Proteinen. Funktionelle Analysen ergaben Ähnlichkeiten des Xenopus laevis-CAR mit dem PXR der Säugetiere: eine niedrige basale Aktivität sowie eine starke Induzierbarkeit durch Liganden. In weiteren funktionellen Analysen wurden die Determinanten der basalen Aktivität des Xenopus laevis-CAR untersucht. Die basale Aktivität war nicht abhängig von der subzellulären Lokalisation, sondern ergab sich aus der Proteinstruktur, welche nur beim CAR der Landvertebraten in einer aktiven Konformation fixiert ist. Ähnlich dem PXR der Säugetiere besitzt CAR der Amphibien eine Aktivierungsdomäne, welche erst durch Ligandenbindung in eine aktive Konformation gebracht wird. Mutationen einzelner Aminosäuren zum jeweils humanen Homolog erhöhten die basale Aktivität des Xenopus laevis-CAR auf die des humanen Rezeptors. Diese Mutanten mit erhöhter basalen Aktivität zeigten eine verstärkte Interaktion mit dem Kofaktor PGC-1a, einem Regulator des Energiestoffwechsels bei Säugetieren. Die hepatischen Zielgene des CAR der Amphibien überlappen zum Teil mit den humanen Zielgenen und spielen ebenfalls eine Rolle im Energiestoffwechsel.