908 resultados para TCM medium
Resumo:
This study was carried out to assess the influence of bovine embryo culture medium Beltsville Agriculture Research Center (BARC), supplemented with FCS, BSA or PVA, on the in vitro oocyte maturation, evidenced by cleavage rate and blastocysts production at different developmental stages. Three experiments were performed, as follows: exp.1: addition of FCS to BARC medium at concentrations of 0, 5 and 10%; exp. 2: addition of BSA to BARC medium at concentrations of 0, 4 and 8 mg/ml; exp. 3: addition of PVA to BARC medium at concentrations of 0, 0.5 and 1.0 mg/ml. TCM 199 supplemented with bicarbonate, pyruvate, gentamicin sulfate, FSH, LH and FCS was used as control group. Oocytes obtained from cow ovaries at slaughterhouse were selected in PBS, and then matured in BARC medium supplemented with FSH, LH and gentamicin sulfate, according to the experimental design. Percoll gradient was used for sperm selection and TALP medium for IVF. In vitro embryo culture was in SOF-m medium; a humidified atmosphere with 5% CO2, in air, at 38.7oC was used for all steps. The number of oocytes reaching blastocyst, expanded blastocyst, and hatched blastocyt stages was recorded, respectively at 72 and 168 h post-insemination. ANOVA and Bonferroni t test were used to determine differences among groups. Differences of P<0.05 were taken as significant. Higher percentage (P<0.05) of cleaved oocytes was observed in group TCM + FCS than for the other groups matured in BARC supplemented with FCS or BSA, regardless the concentration used. However, the cleavage rate was similar between groups BARC plus PVA with 1 mg/ml (85.7%) and TCM + FCS (90.8%). Significant difference was found among groups for the production of blastocysts, with the control group yielding a higher number of blastocysts (results ranging from 47.4 to 51.4%, in comparison with groups using BARC + FCS (4.1 to 19.7%), BSA (1.4 to 5.6%) and PVA (5.7 to 10.6%). In conclusion, BARC medium supplemented with different macromolecules did not promote a beneficial effect on in vitro oocyte maturation, resulting in lower rate of cleavage and blastocyst production when compared with TCM + FCS medium.
Resumo:
This study was designed to comprehensively analyze the differential expression of proteins from human umbilical vein endothelial cells (HUVECs) exposed to tumor conditioned medium (TCM) and to identify the key regulator in the cell cycle progression. The HUVECs were exposed to TCM from breast carcinoma cell line MDA-MB-231, then their cell cycle distribution was measured by flow cytometer (FCM). The role of protein in cell cycle progression was detected via two-dimensional polyacrylamide gel electrophoresis (2-DE) and western blotting. Following the stimulation of TCM, HUVECs showed a more cells in the S phase than did the negative control group (ECGF-free medium with 20% FBS), but the HUVECs' level was similar to the positive control group (medium with 25 mug/ml ECGF and 20% FBS). Increased expression of cyclin D-1/E and some changes in other related proteins occurred after incubation with TCM. From our results, we can conclude that breast carcinoma cell line MDA-MB-231 may secrete soluble pro-angiogenic factors that induce the HUVEC angiogenic switch, during which the expression of cell cycle regulator cyclin D-1/E increases and related proteins play an important role in this process.
Resumo:
This study was designed to observe the effect of tumor conditioned medium (TCM) on the proliferation and apoptosis of human umbilical vein endothelial cells (HUVECs). HUVECs were exposed to TCM from breast carcinoma cell line MDA-MB-231, then we measured their proliferation, apoptosis and cell cycle distribution by MTT and flow cytometery (FCM). Following the stimulation of TCM, HUVECs showed higher pro-mitogenic and anti-apoptotic ability than did the negative control group (ECGF-free medium with 20% FBS), but a similar ability to the positive control group (medium with ECGF and 20% FBS). From these results, we can conclude that breast carcinoma cell line MDA-MB-231 could secret soluble pro-angiogenic factors that induce HUVEC angiogenic switching, including cell cycle progression, proliferation and growth. The role and character of these factors remain to be further studied.
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)