36 resultados para TBM
Resumo:
Using the popular CERCHAR testing to measure the abrasiveness of rock which is CERCHAR abrasiveness index(CAI). The digital imagine processing program IPP is used to quantify the rock texture such as the grain size, the shape of grain and the index of grain homogeneity. And the rock mechanical testing machine are used to measure the strength, hardness and elastic modulus. Basic on these three experiments, this paper finds the relationship between the CAI and physical and mechanical properties of rock. They are both the mesostructure and macroscopical properties of rock. According to the theory of tribology and wear, this paper finds the disc cutter wear mechanism during the machine and rock interaction process. The detail research results are as follows: (1) The size and form of the mineral grains constituting the rocks affect the abrasiveness of the rock. The rock abrasiveness CAI is a function of the product of the texture coefficient(TC) multiplying equivalent quarts content(Q%). (2) There is no obvious relationship between the rock abrasiveness CAI and the single macroscopical property of rock such as hardness, unconfined compressive strength, tensile strength and elastic modulus. But when taking the texture coefficient(TC) and the mineral composition in consideration, it shows that the rock abrasiveness CAI is relative to the combination of the rock mechanical property, the texture coefficient(TC) and the mineral composition. That is to say various factors which are from the mesostructure feature to the macroscopical property of rock control the rock abrasiveness. (3) The disc cutter penetrating into rock is a machine/rock interaction process. During this interaction, the wear of disc cutter is mainly coming from the abrasive of abrasiveness matters. First, the surface of the cutter ring is hunched, and then the material of the cutter ring is being wiped off during the iterative interaction. Second, the hard mineral in the rock and the muck will microcosmic cutting the surface material of cutter ring. (4) The disc cutters consumption is determined by the machine parameters and the geology condition. The machine parameters include the thrust and the revolution rate of the cutterhead. The geology condition include two aspects: the macroscopical properties which are the strength and/or hardness of rock, the presence of discontinuities in rock mass, the hardness, sharp, edge and size of the muck and so on. And the mesostructure features which are the hard mineral composition, the sharp and size of the grain of the rock.
Resumo:
The understanding of rock breaking and chipping due to the TBM cutter disks mechanism in deep tunnels is considered in this paper. The interest stems from the use of TBMs for the excavation of long Trans-Alpine tunnels. Some tests that simulate the disk cutter action at the tunnel face by means of an indenter, acting on a rock specimen are proposed. The rock specimen is confined through a flat-jack and a confinement-free area on one side of the specimen simulates the formation of a groove near the indenter, like it occurs in TBM excavation conditions. Results show a limited influence of the confinement stress versus the thrust increment required for breaking the rock between the indenter and the free side of the specimen. Numerical modelling of the cutter disk action on confined material has also been carried out in order to investigate further aspects of the fracture initiation. Also in this case the importance of the relative position between disk cutter and groove is pointed out. © 2006 Springer-Verlag.
Resumo:
To clarify some aspects of rock destruction with a disc acting on a high confined tunnel face, a series of tests were carried out to examine fracture mechanisms under an indenter that simulates the tunnel boring machine (TBM) tool action, in the presence of an adjacent groove, when a state of stress (lateral confinement) is imposed on a rock sample. These tests proved the importance of carefully establishing the optimal distance of grooves produced by discs acting on a confined surface, and the value (as a mere order of magnitude) of the increase of the thrust to produce the initiation of chip formation, as long as the confinement pressure becomes greater. © University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2011.
Resumo:
Considering that TBMs are nowadays used for long Trans-Alpine tunnels, the
understanding of rock breaking and chipping due to TBM cutter disks mechanism, for deep tunnelling operations, becomes very interesting. In this paper, the results from carried out laboratory tests that simulate the disk cutter action at the rock tunnel face by means of an indentation tool, acting on a rock
specimen with proper size, and the related three-dimensional and two-dimensional numerical modelling are proposed. The developed numerical models simulate the different test conditions (applied load, boundary conditions) allowing the analysis of the stresses distributions along possible breaking planes.
The influence of a confinement-free area on one side of the specimen, simulating the formation of a groove near the tool, is pointed out.
The obtained results from numerical modelling put in evidence a satisfactory agreement with the experimental observations.
Resumo:
The prediction of the tritium production is required for handling procedures of samples, safety&maintenance and licensing of the International Fusion Materials Irradiation Facility (IFMIF).
Resumo:
Where airports were once the sole responsibility of their governments, liberalisation of economies has seen administrative interests in airport spaces divested increasingly towards market led authority. Extant literature suggests that actions in decision spaces can be described under broad idealised forms of governance. However in looking at a sample of 18 different airports it is apparent that these classic models are insufficient to appreciate the contextual complexity of each case. Issues of institutional arrangements, privatisation, and management focus are reviewed against existing governance modes to produce a model for informing privatisation decisions, based on the contextual needs of the individual airport and region. Expanding governance modes to include emergent airport arrangements both contribute to the existing literature, and provides a framework to assist policy makers and those charged with the operation of airports to design effective governance models. In progressing this framework, contributions are made to government decision makers for the development of new, or review of existing strategies for privatisation, while the private sector can identify the intent and expectations of privatisation initiatives to make better informed decisions.
Resumo:
Residential dissonance signifies a mismatch between an individual’s preferred and actual proximal land use patterns in residential neighbourhoods, whereas residential consonance signifies agreement between actual and preferred proximal land uses. Residential dissonance is a relatively unexplored theme in the literature, yet it acts as a barrier to the development of sustainable transport and land use policy. This research identifies mode choice behaviour of four groups living in transit oriented development (TOD) and non-TOD areas in Brisbane, Australia using panel data from 2675 commuters: TOD consonants, TOD dissonants, non-TOD consonants, and non-TOD dissonants. The research investigates a hypothetical understanding that dissonants adjust their travel attitudes and perceptions according to their surrounding land uses over time. The adjustment process was examined by comparing the commuting mode choice behaviour of dissonants between 2009 and 2011. Six binary logistic regression models were estimated, one for each of the three modes considered (e.g. public transport, active transport, and car) and one for each of the 2009 and 2011 waves. Results indicate that TOD dissonants and non-TOD consonants were less likely to use the public transport and active transport; and more likely to use the car compared with TOD consonants. Non-TOD dissonants use public transport and active transport equally to TOD consonants. The results suggest that commuting mode choice behaviour is largely determined by travel attitudes than built environment factors; however, the latter influence public transport and car use propensity. This research also supports the view that dissonants adjust their attitudes to surrounding land uses, but very slowly. Both place (e.g. TOD development) and people-based (e.g. motivational) policies are needed for an effective travel behavioural shift.
Resumo:
In structural brain MRI, group differences or changes in brain structures can be detected using Tensor-Based Morphometry (TBM). This method consists of two steps: (1) a non-linear registration step, that aligns all of the images to a common template, and (2) a subsequent statistical analysis. The numerous registration methods that have recently been developed differ in their detection sensitivity when used for TBM, and detection power is paramount in epidemological studies or drug trials. We therefore developed a new fluid registration method that computes the mappings and performs statistics on them in a consistent way, providing a bridge between TBM registration and statistics. We used the Log-Euclidean framework to define a new regularizer that is a fluid extension of the Riemannian elasticity, which assures diffeomorphic transformations. This regularizer constrains the symmetrized Jacobian matrix, also called the deformation tensor. We applied our method to an MRI dataset from 40 fraternal and identical twins, to revealed voxelwise measures of average volumetric differences in brain structure for subjects with different degrees of genetic resemblance.
Resumo:
In this paper, we used a nonconservative Lagrangian mechanics approach to formulate a new statistical algorithm for fluid registration of 3-D brain images. This algorithm is named SAFIRA, acronym for statistically-assisted fluid image registration algorithm. A nonstatistical version of this algorithm was implemented, where the deformation was regularized by penalizing deviations from a zero rate of strain. In, the terms regularizing the deformation included the covariance of the deformation matrices Σ and the vector fields (q). Here, we used a Lagrangian framework to reformulate this algorithm, showing that the regularizing terms essentially allow nonconservative work to occur during the flow. Given 3-D brain images from a group of subjects, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the nonstatistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the nonconservative terms, creating four versions of SAFIRA. We evaluated and compared our algorithms' performance on 92 3-D brain scans from healthy monozygotic and dizygotic twins; 2-D validations are also shown for corpus callosum shapes delineated at midline in the same subjects. After preliminary tests to demonstrate each method, we compared their detection power using tensor-based morphometry (TBM), a technique to analyze local volumetric differences in brain structure. We compared the accuracy of each algorithm variant using various statistical metrics derived from the images and deformation fields. All these tests were also run with a traditional fluid method, which has been quite widely used in TBM studies. The versions incorporating vector-based empirical statistics on brain variation were consistently more accurate than their counterparts, when used for automated volumetric quantification in new brain images. This suggests the advantages of this approach for large-scale neuroimaging studies.
Resumo:
We implemented least absolute shrinkage and selection operator (LASSO) regression to evaluate gene effects in genome-wide association studies (GWAS) of brain images, using an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sparse groups of SNPs in individual genes were selected by LASSO, which identifies efficient sets of variants influencing the data. These SNPs were considered jointly when assessing their association with neuroimaging measures. We discovered 22 genes that passed genome-wide significance for influencing temporal lobe volume. This was a substantially greater number of significant genes compared to those found with standard, univariate GWAS. These top genes are all expressed in the brain and include genes previously related to brain function or neuropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2, GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4, and CDH13. The top genes we identified with this method also displayed significant and widespread post hoc effects on voxelwise, tensor-based morphometry (TBM) maps of the temporal lobes. The most significantly associated gene was an autism susceptibility gene known as MACROD2.We were able to successfully replicate the effect of the MACROD2 gene in an independent cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean age: 23.8±2.2 SD years). Our approach powerfully complements univariate techniques in detecting influences of genes on the living brain.
Resumo:
Population-based brain mapping provides great insight into the trajectory of aging and dementia, as well as brain changes that normally occur over the human life span.We describe three novel brain mapping techniques, cortical thickness mapping, tensor-based morphometry (TBM), and hippocampal surface modeling, which offer enormous power for measuring disease progression in drug trials, and shed light on the neuroscience of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI).We report the first time-lapse maps of cortical atrophy spreading dynamically in the living brain, based on averaging data from populations of subjects with Alzheimer's disease and normal subjects imaged longitudinally with MRI. These dynamic sequences show a rapidly advancing wave of cortical atrophy sweeping from limbic and temporal cortices into higher-order association and ultimately primary sensorimotor areas, in a pattern that correlates with cognitive decline. A complementary technique, TBM, reveals the 3D profile of atrophic rates, at each point in the brain. A third technique, hippocampal surface modeling, plots the profile of shape alterations across the hippocampal surface. The three techniques provide moderate to highly automated analyses of images, have been validated on hundreds of scans, and are sensitive to clinically relevant changes in individual patients and groups undergoing different drug treatments. We compare time-lapse maps of AD, MCI, and other dementias, correlate these changes with cognition, and relate them to similar time-lapse maps of childhood development, schizophrenia, and HIV-associated brain degeneration. Strengths and weaknesses of these different imaging measures for basic neuroscience and drug trials are discussed.