10 resultados para TANF


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NF-Y is a heterotrimeric transcription factor complex. Each of the NF-Y subunits (NF-YA, NF-YB and NF-YC) in plants is encoded by multiple genes. Quantitative RT-PCR analysis revealed that five wheat NF-YC members (TaNF-YC5, 8, 9, 11 & 12) were upregulated by light in both the leaf and seedling shoot. Co-expression analysis of Affymetrix wheat genome array datasets revealed that transcript levels of a large number of genes were consistently correlated with those of the TaNF-YC11 and TaNF-YC8 genes in 3-4 separate Affymetrix array datasets. TaNF-YC11-correlated transcripts were significantly enriched with the Gene Ontology term photosynthesis. Sequence analysis in the promoters of TaNF-YC11-correlated genes revealed the presence of putative NF-Y complex binding sites (CCAAT motifs). Quantitative RT-PCR analysis of a subset of potential TaNF-YC11 target genes showed that ten out of the thirteen genes were also light-upregulated in both the leaf and seedling shoot and had significantly correlated expression profiles with TaNF-YC11. The potential target genes for TaNF-YC11 include subunit members from all four thylakoid membrane bound complexes required for the conversion of solar energy into chemical energy and rate limiting enzymes in the Calvin cycle. These data indicate that TaNF-YC11 is potentially involved in regulation of photosynthesis-related genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear Factor Y (NF-Y) transcription factor is a heterotrimer comprised of three subunits: NF-YA, NF-YB and NF-YC. Each of the three subunits in plants is encoded by multiple genes with differential expression profiles, implying the functional specialisation of NF-Y subunit members in plants. In this study, we investigated the roles of NF-YB members in the light-mediated regulation of photosynthesis genes. We identified two NF-YB members from Triticum aestivum (TaNF-YB3 & 7) which were markedly upregulated by light in the leaves and seedling shoots using quantitative RT-PCR. A genome-wide coexpression analysis of multiple Affymetrix Wheat Genome Array datasets revealed that TaNF-YB3-coexpressed transcripts were highly enriched with the Gene Ontology term photosynthesis. Transgenic wheat lines constitutively overexpressing TaNF-YB3 had a significant increase in the leaf chlorophyll content, photosynthesis rate and early growth rate. Quantitative RT-PCR analysis showed that the expression levels of a number of TaNF-YB3-coexpressed transcripts were elevated in the transgenic wheat lines. The mRNA level of TaGluTR encoding glutamyl-tRNA reductase, which catalyses the rate limiting step of the chlorophyll biosynthesis pathway, was significantly increased in the leaves of the transgenic wheat. Significant increases in the expression level in the transgenic plant leaves were also observed for four photosynthetic apparatus genes encoding chlorophyll a/b-binding proteins (Lhca4 and Lhcb4) and photosystem I reaction center subunits (subunit K and subunit N), as well as for a gene coding for chloroplast ATP synthase  subunit. These results indicate that TaNF-YB3 is involved in the positive regulation of a number of photosynthesis genes in wheat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light plays a unique role for plants as it is both a source of energy for growth and a signal for development. Light captured by the pigments in the light harvesting complexes is used to drive the synthesis of the chemical energy required for carbon assimilation. The light perceived by photoreceptors activates effectors, such as transcription factors (TFs), which modulate the expression of light-responsive genes. Recently, it has been speculated that increasing the photosynthetic rate could further improve the yield potential of three carbon (C3) crops such as wheat. However, little is currently known about the transcriptional regulation of photosynthesis genes, particularly in crop species. Nuclear factor Y (NF-Y) TF is a functionally diverse regulator of growth and development in the model plant species, with demonstrated roles in embryo development, stress response, flowering time and chloroplast biogenesis. Furthermore, a light-responsive NF-Y binding site (CCAAT-box) is present in the promoter of a spinach photosynthesis gene. As photosynthesis genes are co-regulated by light and co-regulated genes typically have similar regulatory elements in their promoters, it seems likely that other photosynthesis genes would also have light-responsive CCAAT-boxes. This provided the impetus to investigate the NF-Y TF in bread wheat. This thesis is focussed on wheat NF-Y members that have roles in light-mediated gene regulation with an emphasis on their involvement in the regulation of photosynthesis genes. NF-Y is a heterotrimeric complex, comprised of the three subunits NF-YA, NF-YB and NF-YC. Unlike the mammalian and yeast counterparts, each of the three subunits is encoded by multiple genes in Arabidopsis. The initial step taken in this study was the identification of the wheat NF-Y family (Chapter 3). A search of the current wheat nucleotide sequence databases identified 37 NF-Y genes (10 NF-YA, 11 NF-YB, 14 NF-YC & 2 Dr1). Phylogenetic analysis revealed that each of the three wheat NF-Y (TaNF-Y) subunit families could be divided into 4-5 clades based on their conserved core regions. Outside of the core regions, eleven motifs were identified to be conserved between Arabidopsis, rice and wheat NF-Y subunit members. The expression profiles of TaNF-Y genes were constructed using quantitative real-time polymerase chain reaction (RT-PCR). Some TaNF-Y subunit members had little variation in their transcript levels among the organs, while others displayed organ-predominant expression profiles, including those expressed mainly in the photosynthetic organs. To investigate their potential role in light-mediated gene regulation, the light responsiveness of the TaNF-Y genes were examined (Chapters 4 and 5). Two TaNF-YB and five TaNF-YC members were markedly upregulated by light in both the wheat leaves and seedling shoots. To identify the potential target genes of the light-upregulated NF-Y subunit members, a gene expression correlation analysis was conducted using publically available Affymetrix Wheat Genome Array datasets. This analysis revealed that the transcript expression levels of TaNF-YB3 and TaNF-YC11 were significantly correlated with those of photosynthesis genes. These correlated express profiles were also observed in the quantitative RT-PCR dataset from wheat plants grown under light and dark conditions. Sequence analysis of the promoters of these wheat photosynthesis genes revealed that they were enriched with potential NF-Y binding sites (CCAAT-box). The potential role of TaNF-YB3 in the regulation of photosynthetic genes was further investigated using a transgenic approach (Chapter 5). Transgenic wheat lines constitutively expressing TaNF-YB3 were found to have significantly increased expression levels of photosynthesis genes, including those encoding light harvesting chlorophyll a/b-binding proteins, photosystem I reaction centre subunits, a chloroplast ATP synthase subunit and glutamyl-tRNA reductase (GluTR). GluTR is a rate-limiting enzyme in the chlorophyll biosynthesis pathway. In association with the increased expression of the photosynthesis genes, the transgenic lines had a higher leaf chlorophyll content, increased photosynthetic rate and had a more rapid early growth rate compared to the wild-type wheat. In addition to its role in the regulation of photosynthesis genes, TaNF-YB3 overexpression lines flower on average 2-days earlier than the wild-type (Chapter 6). Quantitative RT-PCR analysis showed that there was a 13-fold increase in the expression level of the floral integrator, TaFT. The transcript levels of other downstream genes (TaFT2 and TaVRN1) were also increased in the transgenic lines. Furthermore, the transcript levels of TaNF-YB3 were significantly correlated with those of constans (CO), constans-like (COL) and timing of chlorophyll a/b-binding (CAB) expression 1 [TOC1; (CCT)] domain-containing proteins known to be involved in the regulation of flowering time. To summarise the key findings of this study, 37 NF-Y genes were identified in the crop species wheat. An in depth analysis of TaNF-Y gene expression profiles revealed that the potential role of some light-upregulated members was in the regulation of photosynthetic genes. The involvement of TaNF-YB3 in the regulation of photosynthesis genes was supported by data obtained from transgenic wheat lines with increased constitutive expression of TaNF-YB3. The overexpression of TaNF-YB3 in the transgenic lines revealed this NF-YB member is also involved in the fine-tuning of flowering time. These data suggest that the NF-Y TF plays an important role in light-mediated gene regulation in wheat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"DHS 4047"--Colophon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear Factor Y (NF-Y) is a trimeric complex that binds to the CCAAT box, a ubiquitous eukaryotic promoter element. The three subunits NF-YA, NF-YB and NF-YC are represented by single genes in yeast and mammals. However, in model plant species (Arabidopsis and rice) multiple genes encode each subunit providing the impetus for the investigation of the NF-Y transcription factor family in wheat. A total of 37 NF-Y and Dr1 genes (10 NF-YA, 11 NF-YB, 14 NF-YC and 2 Dr1) in Triticum aestivum were identified in the global DNA databases by computational analysis in this study. Each of the wheat NF-Y subunit families could be further divided into 4-5 clades based on their conserved core region sequences. Several conserved motifs outside of the NF-Y core regions were also identified by comparison of NF-Y members from wheat, rice and Arabidopsis. Quantitative RT-PCR analysis revealed that some of the wheat NF-Y genes were expressed ubiquitously, while others were expressed in an organ-specific manner. In particular, each TaNF-Y subunit family had members that were expressed predominantly in the endosperm. The expression of nine NF-Y and two Dr1 genes in wheat leaves appeared to be responsive to drought stress. Three of these genes were up-regulated under drought conditions, indicating that these members of the NF-Y and Dr1 families are potentially involved in plant drought adaptation. The combined expression and phylogenetic analyses revealed that members within the same phylogenetic clade generally shared a similar expression profile. Organ-specific expression and differential response to drought indicate a plant-specific biological role for various members of this transcription factor family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article details the American experience of welfare reform, and specifically its experience instituting workfare programs for participants. In the United States, the term "welfare" is most commonly used to refer to the program for single mothers and their families, formerly called Aid to Families with Dependent Children (AFDC) and now, Temporary Assistance to Needy Families (TANF). In 1996, politicians "ended welfare as we know it" by fundamentally changing this program with the passage of the Personal Responsibility and Work Opportunity Reconciliation Act of 1996 (PRWORA). The principal focus of the 1996 reform is mandatory work requirements enforced by sanctions and strict time limits on welfare receipt. While PRWORA's emphasis on work is not new, the difference is its significant ideological and policy commitment to employment, enforced by time limits. When welfare reform was enacted, some of its proponents recognized that welfare offices would have to change in order to develop individualized workfare plans, monitor progress, and impose sanctions. The "culture" of welfare offices had to be changed from being solely concerned with eligibility and compliance to individual, intensive casework. In this article, I will discuss how implementing workfare programs have influenced the relationship between clients and their workers at the welfare office. I start by describing the burdens faced by offices even before the enactment of welfare reform. Local welfare offices were expected to run programs that emphasized compliance and eligibility at the same time as workfare programs, which require intensive, personal case management. The next section of the paper will focus on strategies welfare offices and workers use to navigate these contradictory expectations. Lastly, I will present information on how clients react to workfare programs and some reasons they acquiesce to workfare contracts despite their unmet needs. I conclude with recommendations of how to make workfare truly work for welfare clients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human Services agencies often claim to be family-centered, but continue to implement “Service Integration” in a way that supports their mission rather than supporting families. David Berns, guest editor for this issue of the Journal of Family Strengths, presents a framework for redefining the role of governmental agencies beyond their day-to-day delivery of services to one that prevents the need for more intrusive and more costly interventions. Under this philosophy, agencies must consider how families functioned before they requested assistance, and how they will function if services are not successful. By taking the time to truly understand a family’s needs, caseworkers often discover that they may need a service for which they are not eligible and may be eligible for services that they don’t want or need. Instead of focusing entirely on what their agency can do for the family, caseworkers should consider all types of support that might produce better results. Families often need support from friends and communities rather than, or in addition to, a formalized service. Facilitating natural supports in the community may prevent the need for a governmental program. It is only when basic supports break down that families must use ever more intensive and costly programs. The author gives examples of how this framework is guiding the redesign of the TANF Program in Washington, D.C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

America’s low-income families struggle to protect their children from multiple threats to their health and growth. Many research and advocacy groups explore the health and educational effects of food insecurity, but less is known about these effects on very young children. Children’s HealthWatch, a group of pediatric clinicians and public health researchers, has continuously collected data on the effects of food insecurity alone and in conjunction with other household hardships since 1998. The group’s peer reviewed research has shown that a number of economic risks at the household level, including food, housing and energy insecurity, tend to be correlated. These insecurities alone or in conjunction increase the risk that a young child will suffer various negative health consequences, including increases in lifetime hospitalizations, parental report of fair or poor health,1 or risk for developmental delays.2 Child food insecurity is an incremental risk indicator above and beyond the risk imposed by household-level food insecurity. The Children’sHealthwatch research also suggests public benefits programs modify some of these effects for families experiencing hardships. This empirical evidence is presented in a variety of public venues outside the usual scientific settings, such as congressional hearings, to support the needs of America’s most vulnerable population through policy change. Children’s HealthWatch research supports legislative solutions to food insecurity, including sustained funding for public programs and re-evaluation of the use of the Thrifty Food Plan as the basis of SNAP benefits calculations. Children’s HealthWatch is one of many models to support the American Academy of Pediatrics’ call to “stand up, speak up, and step up for children.”3 No isolated group or single intervention will solve child poverty or multiple hardships. However, working collaboratively each group has a role to play in supporting the health and well-being of young children and their families. 1. Cook JT, Frank DA, Berkowitz C, et al. Food insecurity is associated with adverse health outcomes among human infants and toddlers. J Nutr. 2004;134:1432-1438. 2. Rose-Jacobs R, Black MM, Casey PH, et al. Household food insecurity: associations with at-risk infant and toddler development. Pediatrics. 2008;121:65-72. 3. AAP leader says to stand up, speak up, and step up for child health [news release]. Boston, MA: American Academy of Pediatrics; October 11, 2008. http://www2.aap.org/pressroom/nce/nce08childhealth.htm. Accessed January 1, 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Department of Human Services must submit to the Governor and the General Assembly on January 1 of each even-numbered year a written report that details the disparate impact of various provisions of the TANF program on people of different racial or ethnic groups who identify themselves in an application for benefits.