984 resultados para TANDEM DUPLICATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Patients with acute myeloid leukemia (AML) and FLT3/internal tandem duplication (FLT3/ITD) have poor prognosis if treated with chemotherapy only. Whether this alteration also affects outcome after allogeneic hematopoietic stem-cell transplantation (HSCT) remains uncertain. Patients and Methods We analyzed 206 patients who underwent HLA-identical sibling and matched unrelated HSCTs reported to the European Group for Blood and Marrow Transplantation with a diagnosis of AML with normal cytogenetics and data on FLT3/ITD (present: n = 120, 58%; absent: n = 86, 42%). Transplantations were performed in first complete remission (CR) after myeloablative conditioning. Results Compared with FLT3/ITD-negative patients, FLT3/ITD-positive patients had higher median leukocyte count at diagnosis (59 v 21 x 10(9)/L; P < .001) and shorter interval from CR to transplantation (87 v 99 days; P = .04). Other characteristics were similar in the two groups. At 2 years, relapse incidence (RI; +/- standard deviation) was higher (30% +/- 5% v 16% +/- 5%; P = .006) and leukemia-free survival (LFS) lower (58% +/- 5% v 71% +/- 6%; P = .04) in FLT3/ITD-positive compared with FLT3/ITD-negative patients. In multivariate analyses, FLT3/ITD led to increased RI (hazard ratio [HR], 3.4; 95% CI, 1.46 to 7.94; P = .005), as did older age, female sex, shorter interval between CR and transplantation, and higher number of chemotherapy courses before achieving CR. FLT3/ITD positivity was associated with decreased LFS (HR, 0.37; 95% CI, 0.19 to 0.73; P = .002), along with older age and higher number of chemotherapy courses before achieving CR. Conclusion FLT3/ITD adversely affected the outcome of HSCT in the same direction it does after chemotherapy; despite this, more than half of the patients harboring this mutation who received transplants were alive and leukemia free at 2 years. To further improve the results, use of FLT3 inhibitors before or after HSCT deserves investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A spontaneous mutant (M113) of Escherichia coli AG100 with an unstable multiple antibiotic resistance (Mar) phenotype was isolated in the presence of tetracycline. Two mutations were found: an insertion in the promoter of lon (lon3::IS186) that occurred first and a subsequent large tandem duplication, dupIS186, bearing the genes acrAB and extending from the lon3::IS186 to another IS186 present 149 kb away from lon. The decreased amount of Lon protease increased the amount of MarA by stabilization of the basal quantities of MarA produced, which in turn increased the amount of multidrug effux pump AcrAB-TolC. However, in a mutant carrying only a lon mutation, the overproduced pump mediated little, if any, increased multidrug resistance, indicating that the Lon protease was required for the function of the pump. This requirement was only partial since resistance was mediated when amounts of AcrAB in a lon mutant were further increased by a second mutation. In M113, amplification of acrAB on the duplication led to increased amounts of AcrAB and multidrug resistance. Spontaneous gene duplication represents a new mechanism for mediating multidrug resistance in E. coli through AcrAB-TolC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The squamous cell carcinoma antigen (SCCA) is a member of the ovalbumin family of serine proteinase inhibitors (serpins). A neutral form of the protein is found in normal and some malignant squamous cells, whereas an acidic form is detected exclusively in tumor cells and in the circulation of patients with squamous cell tumors. In this report, we describe the cloning of the SCCA gene from normal genomic DNA. Surprisingly, two genes were found. They were tandemly arrayed and flanked by two other closely related serpins, plasminogen activator inhibitor type 2 (PAI2) and maspin at 18q21.3. The genomic structure of the two genes, SCCA1 and SCCA2, was highly conserved. The predicted amino acid sequences were 92% identical and suggested that the neutral form of the protein was encoded by SCCA1 and the acidic form was encoded by SCCA2. Further characterization of the region should determine whether the differential expression of the SCCA genes plays a causal role in development of more aggressive squamous cell carcinomas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[Français] Une fraction importante des génomes eucaryotes est constituée de Gènes Répétés en Tandem (GRT). Un mécanisme fondamental dans l’évolution des GRT est la recombinaison inégale durant la méiose, entrainant la duplication locale (en tandem) de segments chromosomiques contenant un ou plusieurs gènes adjacents. Différents algorithmes ont été proposés pour inférer une histoire de duplication en tandem pour un cluster de GRT. Cependant, leur utilisation est limitée dans la pratique, car ils ne tiennent pas compte d’autres événements évolutifs pourtant fréquents, comme les inversions, les duplications inversées et les délétions. Cette thèse propose différentes approches algorithmiques permettant d’intégrer ces événements dans le modèle de duplication en tandem classique. Nos contributions sont les suivantes: • Intégrer les inversions dans un modèle de duplication en tandem simple (duplication d’un gène à la fois) et proposer un algorithme exact permettant de calculer le nombre minimal d’inversions s’étant produites dans l’évolution d’un cluster de GRT. • Généraliser ce modèle pour l’étude d’un ensemble de clusters orthologues dans plusieurs espèces. • Proposer un algorithme permettant d’inférer l’histoire évolutive d’un cluster de GRT en tenant compte des duplications en tandem, duplications inversées, inversions et délétions de segments chromosomiques contenant un ou plusieurs gènes adjacents.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS (TM) clones with insert sizes similar to 20-40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter beta-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor > 40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The human adult α-globin locus consists of three pairs of homology blocks (X, Y, and Z) interspersed with three nonhomology blocks (I, II, and III), and three Alu family repeats, Alu1, Alu2, and Alu3. It has been suggested that an ancient primate α-globin-containing unit was ancestral to the X, Y, and Z and the Alu1/Alu2 repeats. However, the evolutionary origin of the three nonhomologous blocks has remained obscure. We have now analyzed the sequence organization of the entire adult α-globin locus of gibbon (Hylobates lar). DNA segments homologous to human block I occur in both duplication units of the gibbon α-globin locus. Detailed interspecies sequence comparisons suggest that nonhomologous blocks I and II, as well as another sequence, IV, were all part of the ancestral α-globin-containing unit prior to its tandem duplication. However, sometime thereafter, block I was deleted from the human α1-globin-containing unit, and block II was also deleted from the α2-globin-containing unit in both human and gibbon. These were probably independent events both mediated by independent illegitimate recombination processes. Interestingly, the end points of these deletions coincide with potential insertion sites of Alu family repeats. These results suggest that the shaping of DNA segments in eukaryotic genomes involved the retroposition of repetitive DNA elements in conjunction with simple DNA recombination processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To help understand the mechanisms of gene rearrangement in the mitochondrial (mt) genomes of hemipteroid insects, we sequenced the mt genome of the plague thrips, Thrips imaginis (Thysanoptera). This genome is circular, 15,407 by long, and has many unusual features, including (1) rRNA genes inverted and distant from one another, (2) an extra gene for tRNA-Ser, (3) a tRNA-Val lacking a D-arm, (4) two pseudo-tRNA genes, (5) duplicate control regions, and (6) translocations and/or inversions of 24 of the 37 genes. The mechanism of rRNA gene transcription in T. imaginis may be different from that of other arthropods since the two rRNA genes have inverted and are distant from one another. Further, the rRNA genes are not adjacent or even close to either of the two control regions. Tandem duplication and deletion is a plausible model for the evolution of duplicate control regions and for the gene translocations, but intramitochondrial recombination may account for the gene inversions in T. imaginis. All the 18 genes between control regions #1 and #2 have translocated and/or inverted, whereas only six of the 20 genes outside this region have translocated and/or inverted. Moreover, the extra tRNA gene and the two pseudo-tRNA genes are either in this region or immediately adjacent to one of the control regions. These observations suggest that tandem duplication and deletion may be facilitated by the duplicate control regions and may have occurred a number of times in the lineage leading to T. imaginis. T. imaginis shares two novel gene boundaries with a lepidopsocid species from another order of hemipteroid insects, the Psocoptera. The evidence available suggests that these shared gene boundaries evolved by convergence and thus are not informative for the interordinal phylogeny of hemipteroid insects. We discuss the potential of hemipteroid insects as a model system for studies of the evolution of animal rut genomes and outline some fundamental questions that may be addressed with this system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in the isocitrate dehydrogenase family genes 1 or 2 (IDH1/2) have been discovered by high through put sequencing approaches inglioma and acute myeloid leukemia (AML) and related myeloproliferativeneoplasms. In both diseases, the discovery of IDH mutations has identifieda prognostically new subtype with distinct pathogenetic evolution. Ingliomas mutations are mostly found in IDH1 (>90%). They are infrequent inprimary glioblastoma (GBM) (<10%), but common in secondary GBM thatevolve from lower grade glioma (60−90%). Mutations in IDH1 precede p53mutations or 1p/19q co-deletions in sporadic low grade glioma, hence arean early evant. Co-deletions of 1p/19q, characteristic for oligodenroglioma,are highly associated with IDH1/2 mutations, while they are mutuallyexclusive with EGFR amplifications, a hall mark of primary GBM. IDH1 or 2mutations are associated with younger patient age, but absent in childhoodgliomas, and have a better prognosis that seems to be consistent in gradeII through IV gliomas. In myeloid malignancies mutations are more likelyin IDH2 and are found in de novo and secondary AML (12−18%) andpre-leukemic clonal malignancies (5% chronic; 20% transformed). IDH1/2mutations are strongly associated with NPM1 mutations that are found in30% of novo cytogenetically normal AML. In CN-AML with mutated NPM1,without FLT3 internal tandem duplication (ITD) IDH mutations constitutean adverse prognostic factor. Mutations in the metabolic enzymes IDH1 or2 result in a neomorphic reaction, generating high levels of the metabolite2-hydroxyglutarate (2-HG). IDH mutations are mutually exclusive with TET2mutations in myeloid malignancies that led to the discovery that high levelsof 2-HG inhibit the a-KG dependent dioxygenase TET2. TET2 is involved inepigenetic regulation and mediates demethylation of DNA. This mechanismis in accordance with the association of a methylator phenotype with loss offunction of TET2 by mutation or indirectly by mutation of IDH1/2 in myeloidmalignancies and gliomas, respectively.Metabolism meets Epigenetics. These discoveries will have importantclinical implications: IDH1/2 mutants may serve as unique targets fortherapy. Further, the high concentrations of the onco-metabolite 2-HGgenerated by IDH1/2 mutants, may serve as biomarker in the serum ofpatients with myeloid malignancies and may be amenable by magneticresonance spectroscopy in glioma patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Hox and ParaHox gene clusters are thought to have resulted from the duplication of a ProtoHox gene cluster early in metazoan evolution. However, the origin and evolution of the other genes belonging to the extended Hox group of homeobox-containing genes, that is, Mox and Evx, remains obscure. We constructed phylogenetic trees with mouse, amphioxus and Drosophila extended Hox and other related Antennapedia-type homeobox gene sequences and analyzed the linkage data available for such genes.Results: We claim that neither Mox nor Evx is a Hox or ParaHox gene. We propose a scenariothat reconciles phylogeny with linkage data, in which an Evx/Mox ancestor gene linked to aProtoHox cluster was involved in a segmental tandem duplication event that generated an arrayof all Hox-like genes, referred to as the `coupled¿ cluster. A chromosomal breakage within thiscluster explains the current composition of the extended Hox cluster (with Evx, Hox and Moxgenes) and the ParaHox cluster.Conclusions: Most studies dealing with the origin and evolution of Hox and ParaHox clustershave not included the Hox-related genes Mox and Evx. Our phylogenetic analyses and theavailable linkage data in mammalian genomes support an evolutionary scenario in which anancestor of Evx and Mox was linked to the ProtoHox cluster, and that a tandem duplication of alarge genomic region early in metazoan evolution generated the Hox and ParaHox clusters, plusthe cluster-neighbors Evx and Mox. The large `coupled¿ Hox-like cluster EvxHox/MoxParaHox wassubsequently broken, thus grouping the Mox and Evx genes to the Hox clusters, and isolating theParaHox cluster.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Fox genes are united by encoding a fork head domain, a deoxyribonucleic acid (DNA)-binding domain of the winged-helix type that marks these genes as encoding transcription factors. Vertebrate Fox genes are classified into 23 subclasses named from FoxA to FoxS. We have surveyed the genome of the amphioxus Branchiostoma floridae, identifying 32 distinct Fox genes representing 21 of these 23 subclasses. The missing subclasses, FoxR and FoxS, are specific to vertebrates, and in addition, B. floridae has one further group, FoxAB, that is not found in vertebrates. Hence, we conclude B. floridae has maintained a high level of Fox gene diversity. Expressed sequence tag and complementary DNA sequence data support the expression of 23 genes. Several linkages between B. floridae Fox genes were noted, including some that have evolved relatively recently via tandem duplication in the amphioxus lineage and others that are more ancient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. Results BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. Conclusions The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular assays are widely used to prognosticate canine cutaneous mast cell tumors (MCT). There is limited information about these prognostic assays used on MCT that arise in the subcutis. The aims of this study were to evaluate the utility of KIT immunohistochemical labeling pattern, c-KIT mutational status (presence of internal tandem duplications in exon 11), and proliferation markers-including mitotic index, Ki67, and argyrophilic nucleolar organizing regions (AgNOR)-as independent prognostic markers for local recurrence and/or metastasis in canine subcutaneous MCT. A case-control design was used to analyze 60 subcutaneous MCT from 60 dogs, consisting of 24 dogs with subsequent local recurrence and 12 dogs with metastasis, as compared to dogs matched by breed, age, and sex with subcutaneous MCT that did not experience these events. Mitotic index, Ki67, the combination of Ki67 and AgNOR, and KIT cellular localization pattern were significantly associated with local recurrence and metastasis, thereby demonstrating their prognostic value for subcutaneous MCT. No internal tandem duplication mutations were detected in exon 11 of c-KIT in any tumors. Because c-KIT mutations have been demonstrated in only 20 to 30% of cutaneous MCT and primarily in tumors of higher grade, the number of subcutaneous MCT analyzed in this study may be insufficient to draw conclusions on the role c-KIT mutations in these tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytogenetic and random amplified polymorphic DNA analyses carried out in the species Leptodactylus podicipinus, L. ocellatus, L. labyrinthicus, and L. fuscus from rural and urban habitats of the northwest region of São Paulo State, Brazil, showed that the karyotypes (2n = 22), constitutive heterochromatin distribution and nucleolus organizer region (NOR) location did not differ between the populations from the two environments. The in situ hybridization with an rDNA probe confirmed the location of the NORs on chromosome 8 revealing an in tandem duplication of that region in one of the chromosomes of L. fuscus. DAPI showed that part of the C-band-positive heterochromatin is rich in AT, including that in the proximity the NORs in L. podicipinus and L. ocellatus. The molecular analyses showed that the two populations (urban and rural) of L. podicipinus and L. fuscus are similar from a genetic point of view. The urban and rural populations of species L. ocellatus and L. labyrinthicus showed differences in genetic structures, probably due to urbanization which interferes with the dispersion of those frogs. The marked differences observed between the two populations of L. ocellatus can be representing the cryptic condition of the species. Unweighted pair-group method of analysis and genetic distance analysis detected the genetic proximity between L. ocellatus and L. fuscus. The results indicate that there was no reduction in the genetic diversity in the populations from the urban environment; however, the survival of these frogs would not be guaranteed in the case of an increase in human impact especially for populations of L. labyrinthicus and L. ocellatus. ©FUNPEC-RP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4 alpha. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-beta signalling in Group 3, and NF-kappa B signalling in Group 4, suggest future avenues for rational, targeted therapy.