989 resultados para T-lymphocyte responses
Resumo:
T cell-mediated cytotoxicity against Mycobacterium tuberculosis (MTB)-infected macrophages may be a major mechanism of specific host defense, but little is known about such activities in the lung. Thus, the capacity of alveolar lymphocyte MTB-specific cell lines (AL) and alveolar macrophages (AM) from tuberculin skin test-positive healthy subjects to serve as CTL and target cells, respectively, in response to MTB (H37Ra) or purified protein derivative (PPD) was investigated. Mycobacterial Ag-pulsed AM were targets of blood CTL activity at E:T ratios of > or = 30:1 (51Cr release assay), but were significantly more resistant to cytotoxicity than autologous blood monocytes. PPD- plus IL-2-expanded AL and blood lymphocytes were cytotoxic for autologous mycobacterium-stimulated monocytes at E:T ratios of > or = 10:1. The CTL activity of lymphocytes expanded with PPD was predominantly class II MHC restricted, whereas the CTL activity of lymphocytes expanded with PPD plus IL-2 was both class I and class II MHC restricted. Both CD4+ and CD8+ T cells were enriched in BL and AL expanded with PPD and IL-2, and both subsets had mycobacterium-specific CTL activity. Such novel cytotoxic responses by CD4+ and CD8+ T cells may be a major mechanism of defense against MTB at the site of disease activity.
Resumo:
The relative deficiency of T helper type 1 (Th1) and cytotoxic T lymphocyte (CTL) responses in early life is associated with an increased susceptibility to infections by intracellular microorganisms. This is likely to reflect a preferential polarization of immature CD4 T cells toward a Th2 rather than a Th1 pattern upon immunization with conventional vaccines. In this report, it is shown that a single immunization within the first week of life with DNA plasmids encoding viral (measles virus hemagglutinin, Sendai virus nucleoprotein) or bacterial (C fragment of tetanus toxin) vaccine antigens can induce adult-like Th1 or mixed Th1/Th2 responses indicated by production of IgG2a vaccine-specific antibodies and preferential secretion of interferon-γ (IFN-γ) compared with interleukin (IL)-5 by antigen-specific T cells, as well as significant CTL responses. However, in spite of this potent Th1-driving capacity, subsequent DNA immunization was not capable of reverting the Th2-biased responses induced after early priming with a recombinant measles canarypox vector. Thus, DNA vaccination represents a novel strategy capable of inducing Th1 or mixed Th1/Th2 and CTL responses in neonates and early life, providing it is performed prior to exposure to Th2-driving conventional vaccine antigens.
Resumo:
The specific mechanisms underlying the varied susceptibility of HIV-infected (HIV+) individuals to opportunistic infections (OI) are still incompletely understood. One hypothesis is that quantitative differences in specific T cell responses to a colonizing organism determine the development of an AIDS-defining OI. We evaluated this hypothesis for herpes simplex virus (HSV) infection, a common OI in HIV+ patients. Using limiting dilution analyses, the frequency of HSV-specific CD8+ cytotoxic T lymphocyte precursors (pCTL) and proliferative precursors were quantitated in peripheral blood mononuclear cells from 20 patients coinfected with HIV and HSV-2. The frequency of HSV-specific CD8+ pCTL in HSV+HIV+ individuals was significantly lower than in HSV+HIV− individuals (1 in 77,000 vs. 1 in 6,000, P = .0005) and was not different than in HSV-HIV− individuals (1 in 100,000, P = .24). HIV+ patients who suffered more severe genital herpes recurrences had significantly lower HSV-specific CD8+ pCTL frequencies than those patients with mild recurrences (1 in 170,000 vs. 1 in 26,000, P = .03). In contrast, no significant difference was seen in proliferative precursor frequencies between those patients with mild vs. severe genital herpes (1 in 3,800 vs. 1 in 6,600, P > .5). Quantitative differences in pCTL frequency to HSV appear to be the most important host factor influencing the frequency and severity of HSV reactivation in HIV+ patients. Studies to reconstitute such immunity, especially in people with acyclovir-resistant HSV, appear warranted.
Resumo:
We have introduced a targeted mutation in SH2D1A/DSHP/SAP, the gene responsible for the human genetic disorder X-linked lymphoproliferative disease (XLP). SLAM-associated protein (SAP)-deficient mice had normal lymphocyte development, but on challenge with infectious agents, recapitulated features of XLP. Infection of SAP− mice with lymphocyte choriomeningitis virus (LCMV) or Toxoplasma gondii was associated with increased T cell activation and IFN-γ production, as well as a reduction of Ig-secreting cells. Anti-CD3-stimulated splenocytes from uninfected SAP− mice produced increased IFN-γ and decreased IL-4, findings supported by decreased serum IgE levels in vivo. The Th1 skewing of these animals suggests that cytokine misregulation may contribute to phenotypes associated with mutation of SH2D1A/SAP.
Resumo:
Although hepatitis B surface antigen (HBsAg) per se is highly immunogenic, its use as a vector for the delivery of foreign cytotoxic T-lymphocyte (CTL) epitopes has met with little success because of constraints on HBsAg stability and secretion imposed by the insertion of foreign sequence into critical hydrophobic/amphipathic regions. Using a strategy entailing deletion of DNA encoding HBsAg-specific CTL epitopes and replacement with DNA encoding foreign CTL epitopes, we have derived chimeric HBsAg DNA immunogens which elicited effector and memory CTL responses in vitro, and pathogen- and tumor-protective responses in vivo, when the chimeric HBsAg DNAs were used to immunize mice. We further show that HBsAg DNA recombinant for both respiratory syncytial virus and human papillomavirus CTL epitopes elicited simultaneous responses to both pathogens. These data demonstrate the efficacy of HBsAg DNA as a vector for the delivery of disease-relevant protective CTL responses. They also suggest the applicability of the approach of deriving chimeric HBsAg DNA immunogens simultaneously encoding protective CTL epitopes for multiple diseases. The DNAs we tested formed chimeric HBsAg virus-like particles (VLPs). Thus, our results have implications for the development of vaccination strategies using either chimeric HBsAg DNA or VLP vaccines. HBsAg is the globally administered vaccine for hepatitis B virus infection, inviting its usage as a vector for the delivery of immunogens from other diseases.
Resumo:
© 2015 Taylor & Francis Group, LLC.A characteristic immunopathology of human cancers is the induction of tumor antigen-specific T lymphocyte responses within solid tumor tissues. Current strategies for immune monitoring focus on the quantification of the density and differentiation status of tumor-infiltrating T lymphocytes; however, properties of the TCR repertoire - including antigen specificity, clonality, as well as its prognostic significance β remain elusive. In this study, we enrolled 28 gastric cancer patients and collected tumor tissues, adjacent normal mucosal tissues, and peripheral blood samples to study the landscape and compartmentalization of these patients’ TCR β repertoire by deep sequencing analyses. Our results illustrated antigen-driven expansion within the tumor compartment and the contracted size of shared clonotypes in mucosa and peripheral blood. Most importantly, the diversity of mucosal T lymphocytes could independently predict prognosis, which strongly underscores critical roles of resident mucosal T-cells in executing post-surgery immunosurveillance against tumor relapse.
Resumo:
Immunoreactive T lymphocyte epitopes within the ORF1, ORF2, and ORF 3 products of porcine circovirus type 2 (PCV2) were mapped. For this, overlapping linear 20-mer peptides were synthesized and tested for their ability to induce T lymphocyte proliferation in porcine peripheral blood mononuclear cells (PBMCs) isolated from experimentally PCV2-infected pigs. After a preliminary screening of 31 (ORF1), 23 (ORF2), and 10 (ORF3) peptides using PBMCs from 4 PCV2-infected pigs, none of the peptides appeared to be immunoreactive (stimulation index [SI] : 2) in all four pigs. Only 14 peptides appeared to be immunoreactive in 3 of the 4 pigs. These peptides were designated as immunodominant in the preliminary screening and selected for further analysis. The immunodominant peptides were resynthesized and purified by high-performance liquid chromatography and tested for their ability to induce T lymphocyte proliferation in PBMCs from another three PCV2-infected pigs. None of the immunodominant peptides appeared to be immunoreactive in all three pigs of the second screening. Only three peptides appeared to be immunoreactive in two of three pigs, two encoded by PCV2 ORF1 (amino acid residues 81-100 and 201-220) and one encoded by PCV2 ORF3 (amino acid residues 31-50), and were therefore considered to be immunodominant in both screenings. Although peptides encoded by ORF2 appeared to show the highest immunoreactivity in some pigs, none of these peptides displayed immunodominance in both screenings. In summary, the present study indicates that the T lymphocyte responses to PCV2 are primarily directed toward epitopes of the nonstructural proteins of ORF1 and ORF3.
Resumo:
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4(+) T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4(+) T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4(+) T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IA(b) and IA(d). Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-gamma secretion against 11 out of the 27 peptides in BALB/c mice; CD4(+) and CD8(+) T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4(+) and CD8(+) T cells, able to simultaneously proliferate and produce IFN-gamma and TNF-alpha, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.
Resumo:
It is generally thought that an effective vaccine to prevent HIV-1 infection should elicit both strong neutralizing antibody and cytotoxic T lymphocyte responses. We recently demonstrated that potent, boostable, long-lived HIV-1 envelope (Env)-specific cytotoxic T lymphocyte responses can be elicited in rhesus monkeys using plasmid-encoded HIV-1 env DNA as the immunogen. In the present study, we show that the addition of HIV-1 Env protein to this regimen as a boosting immunogen generates a high titer neutralizing antibody response in this nonhuman primate species. Moreover, we demonstrate in a pilot study that immunization with HIV-1 env DNA (multiple doses) followed by a final immunization with HIV-1 env DNA plus HIV-1 Env protein (env gene from HXBc2 clone of HIV IIIB; Env protein from parental HIV IIIB) completely protects monkeys from infection after i.v. challenge with a chimeric virus expressing HIV-1 env (HXBc2) on a simian immmunodeficiency virusmac backbone (SHIV-HXBc2). The potent immunity and protection seen in these pilot experiments suggest that a DNA prime/DNA plus protein boost regimen warrants active investigation as a vaccine strategy to prevent HIV-1 infection.
Resumo:
We demonstrate that the receptor binding moiety of Escherichia coli heat-labile enterotoxin (EtxB) can completely prevent autoimmune disease in a murine model of arthritis. Injection of male DBA/1 mice at the base of the tail with type II collagen in the presence of complete Freund’s adjuvant normally leads to arthritis, as evidenced by inflammatory infiltration and swelling of the joints. A separate injection of EtxB at the same time as collagen challenge prevented leukocyte infiltration, synovial hyperplasia, and degeneration of the articular cartilage and reduced clinical symptoms of disease by 82%. The principle biological property of EtxB is its ability to bind to the ubiquitous cell surface receptor GM1 ganglioside, and to other galactose-containing glycolipids and galactoproteins. The importance of receptor interaction in mediating protection from arthritis was demonstrated by the failure of a non-receptor-binding mutant of EtxB to elicit any protective effect. Analysis of T cell responses to collagen, in cultures of draining lymph node cells, revealed that protection was associated with a marked increase in interleukin 4 production concomitant with a reduction in interferon γ levels. Furthermore, in protected mice there was a significant reduction in anti-collagen antibody levels as well as an increase in the IgG1/IgG2a ratio. These observations show that protection is associated with a shift in the Th1/Th2 balance as well as a general reduction in the extent of the anti-type II collagen immune response. This suggests that EtxB-receptor-mediated modulation of lymphocyte responses provides a means of preventing autoimmune disease.
Resumo:
Immunological self-tolerance is ensured by eliminating or inhibiting self-reactive lymphocyte clones, creating physical or functional holes in the B- and T-lymphocyte antigen receptor repertoires. The nature and size of these gaps in our immune defenses must be balanced against the necessity of mounting rapid immune responses to an everchanging array of foreign pathogens. To achieve this balance, only a fraction of particularly hazardous self-reactive clones appears to be physically eliminated from the repertoire in a manner that fully prevents their recruitment into an antimicrobial immune response. Many self-reactive cells are retained with a variety of conditional and potentially flexible restraints: (i) their ability to be triggered by antigen is diminished by mechanisms that tune down signaling by their antigen receptors, (ii) their ability to carry out inflammatory effector functions can be inhibited, and (iii) their capacity to migrate and persist is constrained. This balance between tolerance and immunity can be shifted, altering susceptibility to autoimmune disease and to infection by genetic or environmental differences either in the way antigens are presented, in the tuning molecules that adjust triggering set points for lymphocyte responses to antigen, or in the effector molecules that eliminate, retain, or expand particular clones.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Purified B-cells fail to proliferate in response to the strong thymus-independent (TI) antigen Lipopolysaccharide (LPS) in the absence of macrophages (Corbel and Melchers, 1983). The fact that macrophages, or factors derived from them are required is supported by the inability of marginal zone B-cells in infants to respond to highly virulent strains of bacteria such as Neisseria meningitidis and Streptococcus pneumoniae (Timens, 1989). This may be due to the lack of CD21 expression on B-cells in infants which could associate with its co-receptor (C3d) on adjacent macrophages. It is not clear whether cell surface contacts and/or soluble products are involved in lymphocyte-macrophage interactions in response to certain antigens. This thesis describes the importance of the macrophage in lymphocyte responses to T-dependent (TD) and TI antigens. The major findings of this thesis were as follows: (1). Macrophages were essential for a full proliferative response to a range of T - and B-cell mitogens and TI-1 and TI-2 antigens, including Concanavalin A, LPS, Pokeweed mitogen (PWM), Dextran sulphate, Phytohaemagglutinin-P (PHA-P) and Poly[I][C]. (2). A ratio of 1 macrophage to 1000 lymphocytes was sufficient for the mitogens to exert their effects. (3). The optimal conditions were established for the activation of an oxidative burst in cells of the monocyte/macrophage lineage as measured by luminometry. The order of ability was OpZ >PMA/lonomycin >f-MLP >Con A >DS >PHA >Poly[I][C] >LPS >PWM. Responses were only substantial and protracted with OpZ and PMA. Peritoneal macrophages were the most responsive cells, whereas splenic and alveolar macrophages were significantly less active and no response could be elicited with Kupffer cells, thus demonstrating heterogeneity between macrophages. (4). Activated macrophages that were then fixed with paraformaldehyde were unable to restore mitogenic responsiveness, even with a ratio of 1 macrophage to 5 lymphocytes. (5). Although highly purified T- and B-cells could respond to mitogen provided live macrophages were present, maximum activation was only observed when all 3 cell types were present. (6). Supernatants from purified macrophage cultures treated with a range of activators were able to partially restore lymphocyte responses to mitogen in macrophage-depleted splenocyte cultures, and purified T - and B-cell cultures. In fact supernatants from macrophages treated with LPS for only 30 minutes could restore responsiveness. Supernatants from OpZ treated macrophages were without effect. (7). Macrophage supernatants could not induce proliferation in the absence of mitogen. They therefore provide a co-mitogenic signal required by lymphocytes in order to respond to mitogen. (8). Macrophage product profiles revealed that LPS and Con A-treated macrophage supernatants showed elevated levels of IL-1β, TNF -α L TB4 and TXB2. These products were therefore good candidates as the co-mitogenic factor. The possible inhibitory factors secreted by OpZ-treated macrophages were PGE2, IL-10 and NO. (9). The removal of cytokines, eicosanoids and TNF-α from LPS-treated macrophage supernatants using Cycloheximide, Dexamethasone and an MMPI respectively, resulted in the inability of these supernatants to restore macrophage-depleted lymphocyte responses to mitogen. (10). rIL-1β and rTNF-α are co-mitogenic factors, as macrophage-depleted lymphocytes incubated with rIL-1β and rTNF-α can respond to mitogen.
Resumo:
Background We have previously demonstrated that human kidney proximal tubule epithelial cells (PTEC) are able to modulate autologous T and B lymphocyte responses. It is well established that dendritic cells (DC) are responsible for the initiation and direction of adaptive immune responses and that these cells occur in the renal interstitium in close apposition to PTEC under inflammatory disease settings. However, there is no information regarding the interaction of PTEC with DC in an autologous human context. Methods Human monocytes were differentiated into monocyte-derived DC (MoDC) in the absence or presence of primary autologous activated PTEC and matured with polyinosinic:polycytidylic acid [poly(I:C)], while purified, pre-formed myeloid blood DC (CD1c+ BDC) were cultured with autologous activated PTEC in the absence or presence of poly(I:C) stimulation. DC responses were monitored by surface antigen expression, cytokine secretion, antigen uptake capacity and allogeneic T-cell-stimulatory ability. Results The presence of autologous activated PTEC inhibited the differentiation of monocytes to MoDC. Furthermore, MoDC differentiated in the presence of PTEC displayed an immature surface phenotype, efficient phagocytic capacity and, upon poly(I:C) stimulation, secreted low levels of pro-inflammatory cytokine interleukin (IL)-12p70, high levels of anti-inflammatory cytokine IL-10 and induced weak Th1 responses. Similarly, pre-formed CD1c+ BDC matured in the presence of PTEC exhibited an immature tolerogenic surface phenotype, strong endocytic and phagocytic ability and stimulated significantly attenuated T-cell proliferative responses. Conclusions Our data suggest that activated PTEC regulate human autologous immunity via complex interactions with DC. The ability of PTEC to modulate autologous DC function has important implications for the dampening of pro-inflammatory immune responses within the tubulointerstitium in renal injuries. Further dissection of the mechanisms of PTEC modulation of autologous immune responses may offer targets for therapeutic intervention in renal medicine.
Resumo:
The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141(+) DC subset. CD141(+) DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-beta, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c(+) DC subset. Polyinosine-polycytidylic acid (poly I:C)-activated CD141(+) DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8(+) cytotoxic T lymphocytes than poly I:C-activated CD1c(+) DCs. Importantly, CD141(+) DCs, but not CD1c(+) DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141(+) DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8 alpha(+) DC subset. The data demonstrate a role for CD141(+) DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.