952 resultados para T-cell receptor repertoire


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low frequency of precursor cells specific for any particular antigen (Ag) makes it difficult to characterize preimmune T cell receptor (TCR) repertoires and to understand repertoire selection during an immune response. We have undertaken a combined adoptive transfer single-cell PCR approach to probe the Ag-specific preimmune repertoires of individual mice. Our strategy was to inject paired irradiated recipient mice with normal spleen cells prepared from individual donors and to compare the TCR repertoires subsequently selected during a CD8 response to a defined model Ag. We found that although some TCRs were shared, the TCR repertoires selected by mice receiving splenocytes from the same donor were not identical in terms of the TCRs selected and their relative frequencies. Our results together with computer simulations imply that individual mice express distinct Ag-specific preimmune TCR repertoires composed of expanded clones and that selection by Ag is a random process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HLA-A2+ melanoma patients develop naturally a strong CD8+ T cell response to a self-peptide derived from Melan-A. Here, we have used HLA-A2/peptide tetramers to isolate Melan-A-specific T cells from tumor-infiltrated lymph nodes of two HLA-A2+ melanoma patients and analyzed their TCR beta chain V segment and complementarity determining region 3 length and sequence. We found a broad diversity in Melan-A-specific immune T-cell receptor (TCR) repertoires in terms of both TCR beta chain variable gene segment usage and clonal composition. In addition, immune TCR repertoires selected in the patients were not overlapping. In contrast to previously characterized CD8+ T-cell responses to viral infections, this study provides evidence against usage of highly restricted TCR repertoire in the natural response to a self-differentiation tumor antigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen-specific T cell receptors (TCRs) recognise complexes of immunogenic peptides (p) and major histocompatibility complex (MHC) glycoproteins. Responding T cell populations show profiles of preferred usage (or bias) toward one or few TCRβ chains. Such skewing is also observed, though less commonly, in TCRα chain usage. The extent and character of clonal diversity within individual, antigen-specific T cell sets can be established by sequence analysis of the TCRVβ and/or TCRVα CDR3 loops. The present review provides examples of such TCR repertoires in prominent responses to acute and persistent viruses. The determining role of structural constraints and antigen dose is discussed, as is the way that functionally and phenotypically distinct populations can be defined at the clonal level. In addition, clonal dissection of “high” versus “low” avidity, or “central” versus “effector” memory sets provides insights into how these antigen specific T cell responses are generated and maintained. As TCR diversity potentially influences both the protective capacity of CD8+ T cells and the subversion of immune control that leads to viral escape, analysing the spectrum of TCR selection and maintenance has implications for improving the functional efficacy of T cell responsiveness and effector function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our studies we have focused on the issue of variability and diversity of the $\gamma$ (or $\delta)$ chain T cell receptor (TCR) genes by studying cDNA transcripts in peripheral blood mononuclear cells or $\gamma\delta$ TCR+ T cell clones. The significance of these studies lies in the better understanding of the molecular biology of the $\gamma\delta$ T cell receptor as well as in answering the question whether certain molecular forms predominate in $\gamma\delta$ T cells exhibiting specific immunologic functions. We establish that certain $\gamma$-chain TCR genes exhibit particular patterns of rearrangements in cDNA transcripts in normal individuals. V$\gamma$I subgroup were shown to preferentially rearrange to J$\gamma$2C$\gamma$2 gene segments. These preferential VJC rearrangements, may have implications regarding the potential for diversity and polymorphism of the $\gamma$-chain TCR gene. In addition, the preferential association of V$\gamma$I genes with J$\gamma$2C$\gamma$2, which encode a non-disulfide-linked $\gamma\delta$ TCR, suggests that $\gamma$ chains utilizing V$\gamma$I are predominantly expressed as non-disulfide-linked $\gamma\delta$ TCR heterodimers. The implications of this type of expression remain to be determined. We identified two alternative splicing events of the $\gamma$-chain TCR genes occurring in high frequency in all the normal individuals examined. These events may suggest additional mechanisms of regulation and control as well as diversification of $\gamma\delta$ TCR gene expression. The question whether particular forms of $\gamma$ or $\delta$-chain TCR genes are involved in HLA Class I recognition by specific $\gamma\delta$ cytotoxic T cell clones was addressed. Our results indicated that the T cell clones expressed identical $\gamma$ but distinct $\delta$-chains suggesting that the specificity for recognition of HLA-A2 or HLA-A3 may be conferred by the $\delta$-chain TCR. The issue of the degree of diversity and polymorphism of the $\delta$-chain TCR genes in a patient with a primary immunodeficiency (Omenn's syndrome) was addressed. A limited pattern of rearrangements in peripheral blood transcripts was found, suggesting that a limited $\gamma\delta$ TCR repertoire may be expressed in this particular primary immunodeficiency syndrome. Overall, our findings suggest that $\delta$-chain TCR genes exhibit the potential for significant diversity and that there are certain preferential patterns of expression that may be associated with particular immunologic functions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonobese diabetic (NOD) mice develop insulin-dependent diabetes mellitus due to autoimmune T lymphocyte-mediated destruction of pancreatic β cells. Although both major histocompatibility complex class I-restricted CD8+ and class II-restricted CD4+ T cell subsets are required, the specific role each subset plays in the pathogenic process is still unclear. Here we show that class I-dependent T cells are required for all but the terminal stages of autoimmune diabetes development. To characterize the diabetogenic CD8+ T cells responsible, we isolated and propagated in vitro CD8+ T cells from the earliest insulitic lesions of NOD mice. They were cytotoxic to NOD islet cells, restricted to H-2Kd, and showed a diverse T cell receptor β chain repertoire. In contrast, their α chain repertoire was more restricted, with a recurrent amino acid sequence motif in the complementarity-determining region 3 loop and a prevalence of Vα17 family members frequently joined to the Jα42 gene segment. These results suggest that a number of the CD8+ T cells participating in the initial phase of autoimmune β cell destruction recognize a common structural component of Kd/peptide complexes on pancreatic β cells, possibly a single peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In birds and mammals T cells develop along two discrete pathways characterized by expression of either the αβ or the γδ T-cell antigen receptors (TCRs). To gain further insight into the evolutionary significance of the γδ T-cell lineage, the present studies sought to define the chicken TCRγ locus. A splenic cDNA library was screened with two polymerase chain reaction products obtained from genomic DNA using primers for highly conserved regions of TCR and immunoglobulin genes. This strategy yielded cDNA clones with characteristics of mammalian TCR γ chains, including canonical residues considered important for proper folding and stability. Northern blot analysis with the TCRγ cDNA probe revealed 1.9-kb transcripts in the thymus, spleen, and a γδ T-cell line, but not in B or αβ T-cell lines. Three multimember Vγ subfamilies, three Jγ gene segments, and a single constant region Cγ gene were identified in the avian TCRγ locus. Members of each of the three Vγ subfamilies were found to undergo rearrangement in parallel during the first wave of thymocyte development. TCRγ repertoire diversification was initiated on embryonic day 10 by an apparently random pattern of V-Jγ recombination, nuclease activity, and P- and N-nucleotide additions to generate a diverse repertoire of avian TCRγ genes early in ontogeny.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diversity of T cell receptors (TCR) and immunoglobulins (Ig) is generated by V(D)J recombination of antigen receptor (AgR) loci. The Tcra-Tcrd locus is of particular interest because it displays a nested organization of Tcrd and Tcra gene segments and V(D)J recombination follows an intricate developmental program to assemble both TCRδ and TCRα repertoires. However, the mechanisms that dictate the developmental regulation of V(D)J recombination of the Tcra-Tcrd locus remain unclear.

We have previously shown that CCCTC-binding factor (CTCF) regulates Tcra gene transcription and rearrangement through organizing chromatin looping between CTCF- binding elements (CBEs). This study is one of many showing that CTCF functions as a chromatin organizer and transcriptional regulator genome-wide. However, detailed understanding of the impact of specific CBEs is needed to fully comprehend the biological function of CTCF and how CTCF influences the generation of the TCR repertoire during thymocyte development. Thus, we generated several mouse models with genetically modified CBEs to gain insight into the CTCF-dependent regulation of the Tcra-Tcrd locus. We revealed a CTCF-dependent chromatin interaction network at the Tcra-Tcrd locus in double-negative thymocytes. Disruption of a discrete chromatin loop encompassing Dδ, Jδ and Cδ gene segments allowed a single Vδ segment to frequently contact and rearrange to diversity and joining gene segments and dominate the adult TCRδ repertoire. Disruption of this loop also narrowed the TCRα repertoire, which, we believe, followed as a consequence of the restricted TCRδ repertoire. Hence, a single CTCF-mediated chromatin loop directly regulates TCRδ diversity and indirectly regulates TCRα diversity. In addition, we showed that insertion of an ectopic CBE can modify chromatin interactions and disrupt the rearrangement of particular Vδ gene segments. Finally, we investigated the role of YY1 in early T cell development by conditionally deleting YY1 in developing thymocytes. We found that early ablation of YY1 caused severe developmental defects in the DN compartment due to a dramatic increase in DN thymocyte apoptosis. Furthermore, late ablation of YY1 resulted in increased apoptosis of DP thymocytes and a restricted TCRα repertoire. Mechanistically, we showed that p53 was upregulated in both DN and DP YY1-deficient thymocytes. Eliminating p53 in YY1-deficient thymocytes rescued the survival and developmental defects, indicating that these YY1-dependent defects were p53-mediated. We conclude that YY1 is required to maintain cell viability during thymocyte development by thwarting the accumulation of p53.

Overall, this thesis work has shown that CTCF-dependent looping provides a central framework for lineage- and developmental stage-specific regulation of Tcra-Tcrd gene expression and rearrangements. In addition, we identified YY1 as a novel regulator of thymocyte viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Murine intestinal intraepithelial lymphocytes (IEL) have been shown to contain subsets of alpha/beta TCR+ and gamma/delta TCR+ T cells that spontaneously produce cytokines such as IFN-gamma and IL-5. We have now determined the nature and cell cycle stage of these cytokine-producing T lymphocytes in EIL by using IFN-gamma- and IL-5-specific ELISPOT assay, cytokine-specific mRNA-cDNA dot-blot hybridization and polymerase chain reaction, and flow cytometry (FACS) for DNA analysis. When CD3+ T cells from IEL of normal C3H/HeN mice were separated into low and high density fractions by discontinuous Percoll gradients, IFN-gamma and IL-5 spot-forming cells were only found in the former population. Analysis of mRNA for these cytokines by both IFN-gamma- and IL-5-specific dot-blot hybridization and polymerase chain reaction revealed that higher levels of message for IFN-gamma and IL-5 were also seen in the low density fraction. However, cell cycle analysis of these two fractions by FACS using propidium iodide showed a similar pattern of cell cycle stages in both low and high density populations (G0 + G1 approximately 96 to 98% and S/G2 + M approximately 2 to 4%). Finally, mRNA from gamma/delta TCR+ and alpha/beta TCR+ T cells in both low and high density fractions of IEL were analyzed for IFN-gamma and IL-5 message by polymerase chain reaction. After 35 cycles of amplification, both gamma/delta TCR+ and alpha/beta TCR+ T cells in the low density fraction expressed higher levels of message for these two cytokines when compared with the high density population. These results have now shown that both gamma/delta and alpha/beta TCR+ IEL can be separated into low and high density subsets and both fractions possess a similar stage of cell cycle. However, only the low density cells (in G1 phase) of both gamma/delta and alpha/beta TCR types possess increased cytokine-specific mRNA and produce the cytokines IFN-gamma and IL-5. Our results suggest that alpha/beta TCR+ and gamma/delta TCR+ IEL can produce cytokines without cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To examine whether the T cell receptor (TCR) A or TCRB loci exhibit linkage with disease in multiplex rheumatoid arthritis (RA) families. Methods. A linkage study was performed in 184 RA families from the UK Arthritis and Rheumatism Council Repository, each containing at least 1 affected sibpair. The microsatellites D14S50, TCRA, and D14S64 spanning the TCRA locus and D7S509, Vβ6.7, and D7S688 spanning the TCRB locus were used as DNA markers. The subjects were genotyped using a semiautomated polymerase chain reaction-based method. Two-point and multipoint linkage analyses were performed. Results. Nonparametric single-marker likelihood odds (LOD) scores were 0.49 (P = 0.07) for D14S50, 0.65 (P = 0.04) for TCRA, 0.07 (P = 0.29) for D14S64, 0.01 (P = 0.43) for D7S509, 0.0 (P = 0.50) for Vβ6.7, and 0.0 (P = 0.50) for D7S688. By multipoint analysis, there was no evidence of linkage at TCRB (LOD score 0), and the maximum LOD score at the TCRA locus was 0.37 (at D14S50). The presence of a susceptibility locus (LOD score < -2.0) was excluded, with lambda ≤ 1.8 at TCRA and ≤1.4 at TCRB. Conclusion. These linkage studies provide no significant evidence of a major germline-encoded TCRA or TCRB component of susceptibility to RA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of germline polymorphisms of the T-cell receptor A/D and B loci in susceptibility to ankylosing spondylitis was investigated by linkage studies using microsatellite markers in 215 affected sibling pairs. The presence of a significant susceptibility gene (lambda ≤ 1.6) at the TCRA/D locus was excluded (LOD score < -2.0). At the TCRB locus, there was weak evidence of the presence of a susceptibility gene (P = 0.01, LOD score 1.1). Further family studies will be required to determine whether this is a true or false-positive finding. It is unlikely that either the TCRA/D or TCRB loci contain genes responsible for more than a moderate proportion of the non-MHC genetic susceptibility to ankylosing spondylitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of different LH-like hormones, such as hCG, PMSG/equine (e) CG, ovine (o) LH, eLH, and rat (r) LH, to bind to and stimulate steroidogenesis in two types of rat gonadal cells was studied under the same experimental conditions. In both Leydig and granulosa cells, the maximal steroidogenic responses elicited by optimal doses of different LHs present during a 2-h incubation were comparable. However, if the cells were exposed to the different LHs for a brief period and then subjected to interference with hormone action by removing the unbound hormone from the medium by washing or adding specific antisera, differences were observed in the amount of steroid produced during subsequent incubation in hormone-free medium. Thus, in the case of hCG, either of these procedures carried out at 15 or 30 min of incubation had little inhibitory effect on the amount of steroid produced at 2 h, the latter being similar to that produced by cells incubated in the continued presence of hCG for 2 h. With eCG and rLH, the effect was dramatic, in that there was a total inhibition of subsequent steroidogenic response. In cells exposed to eLH and oLH, inhibition of subsequent steroidogenesis due to either removal of the free-hormone or addition of specific antisera at 15 or 30 min was only partial. Although all of the antisera used were equally effective in inhibiting the steroidogenic response to respective gonadotropins when added along with hormones at the beginning of incubation, differences were observed in the degree of inhibition of this response when the same antisera were added at later times of incubation. Thus, when antisera were added 60 min after the hormone, the inhibition of steroidogenesis was total (100%) for eCG, partial (10–40%) for eLH and oLH, and totally lacking in cells treated with hCG. From this, it appears that hCG bound to the receptor probably becomes unavailable for binding to its antibody with time, while in the case of eCG and other LHs used, the antibody can still inhibit the biological activity of the hormone. Studies with 125I-labeled hormones further supported the conclusion that hCG differs from all other LHs in being most tightly bound and, hence, least dissociable, while eCG and rLH dissociate most readily; oLH and eLH can be placed in between these hormones in the extent of their dissociability. (Endocrinology 116: 597–603,1985)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor beta [TGF-beta]) cytokines. IL-10 and TGF-beta are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-beta on M. tuberculosis-reactive human CD4(+) and gammadelta T cells, the two major human T-cell subsets activated by M. tuberculosis, was investigated. Both IL-10 and TGF-beta inhibited proliferation and gamma interferon production by CD4(+) and gammadelta T cells. IL-10 was a more potent inhibitor than TGF-beta for both T-cell subsets. Combinations of IL-10 and TGF-beta did not result in additive or synergistic inhibition. IL-10 inhibited gammadelta and CD4(+) T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4(+) T cells and, to a lesser extent, for gammadelta T cells. TGF-beta inhibited both CD4(+) and gammadelta T cells directly and had little effect on APC function for gammadelta and CD4(+) T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-beta. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-beta both inhibited CD4(+) and gammadelta T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.