919 resultados para System of global interdependence
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Earth observations (EO) represent a growing and valuable resource for many scientific, research and practical applications carried out by users around the world. Access to EO data for some applications or activities, like climate change research or emergency response activities, becomes indispensable for their success. However, often EO data or products made of them are (or are claimed to be) subject to intellectual property law protection and are licensed under specific conditions regarding access and use. Restrictive conditions on data use can be prohibitive for further work with the data. Global Earth Observation System of Systems (GEOSS) is an initiative led by the Group on Earth Observations (GEO) with the aim to provide coordinated, comprehensive, and sustained EO and information for making informed decisions in various areas beneficial to societies, their functioning and development. It seeks to share data with users world-wide with the fewest possible restrictions on their use by implementing GEOSS Data Sharing Principles adopted by GEO. The Principles proclaim full and open exchange of data shared within GEOSS, while recognising relevant international instruments and national policies and legislation through which restrictions on the use of data may be imposed.The paper focuses on the issue of the legal interoperability of data that are shared with varying restrictions on use with the aim to explore the options of making data interoperable. The main question it addresses is whether the public domain or its equivalents represent the best mechanism to ensure legal interoperability of data. To this end, the paper analyses legal protection regimes and their norms applicable to EO data. Based on the findings, it highlights the existing public law statutory, regulatory, and policy approaches, as well as private law instruments, such as waivers, licenses and contracts, that may be used to place the datasets in the public domain, or otherwise make them publicly available for use and re-use without restrictions. It uses GEOSS and the particular characteristics of it as a system to identify the ways to reconcile the vast possibilities it provides through sharing of data from various sources and jurisdictions on the one hand, and the restrictions on the use of the shared resources on the other. On a more general level the paper seeks to draw attention to the obstacles and potential regulatory solutions for sharing factual or research data for the purposes that go beyond research and education.
Resumo:
Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action.
Resumo:
This paper conceptualizes the European Union (EU) as a system of differentiated integration characterized by both variation in levels of centralization (vertical differentiation) and variation in territorial extension (horizontal differentiation) across policy areas. Differentiation has been a concomitant of deepening and widening and has increased and consolidated as the EU’s powers, policy scope, and membership have grown. Turning to explanation, the paper attributes the pattern of differentiated integration in the EU to the interaction of interdependence and politicization. Differentiation among the member states (internal differentiation) results from supranational integration under conditions of high interdependence and politicization. By contrast, external differentiation (the selective policy integration of non-member states) occurs in highly interdependent but weakly politicized policy areas. These constellations are illustrated in case studies of differentiation in the internal market, monetary union, and defence.
Resumo:
With the accelerated trend of global warming, the thermal behavior of existing buildings, which were typically designed based on current weather data, may not be able to cope with the future climate. This paper quantifies, through computer simulations, the increased cooling loads imposed by potential global warming and probable indoor temperature increases due to possible undersized air-conditioning system. It is found from the sample office building examined that the existing buildings would generally be able to adapt to the increasing warmth of 2030 year Low and High scenarios projections and 2070 year Low scenario projection. However, for the 2070 year High scenario, the study indicates that the existing office buildings, in all capital cities except for Hobart, will suffer from overheating problems. When the annual average temperature increase exceeds 2°C, the risk of current office buildings subjected to overheating will be significantly increased. For existing buildings which are designed with current climate condition, it is shown that there is a nearly linear correlation between the increase of average external air temperature and the increase of building cooling load. For the new buildings, in which the possible global warming has been taken into account in the design, a 28-59% increase of cooling capacity under 2070 High scenario would be required to improve the building thermal comfort level to an acceptable standard.
Resumo:
As climate change will entail new conditions for the built environment, the thermal behaviour of air-conditioned office buildings may also change. Using building computer simulations, the impact of warmer weather is evaluated on the design and performance of air-conditioned office buildings in Australia, including the increased cooling loads and probable indoor temperature increases due to a possibly undersized air-conditioning system, as well as the possible change in energy use. It is found that existing office buildings would generally be able to adapt to the increasing warmth of year 2030 Low and High scenarios projections and the year 2070 Low scenario projection. However, for the 2070 High scenario, the study indicates that the existing office buildings in all capital cities of Australia would suffer from overheating problems. For existing buildings designed for current climate conditions, it is shown that there is a nearly linear correlation between the increase of average external air temperature and the increase of building cooling load. For the new buildings designed for warmer scenarios, a 28-59% increase of cooling capacity under the 2070 High scenario would be required.
Resumo:
As global warming entails new conditions for the built environment, the thermal behavior of existing air conditioned office buildings, which are typically designed based on current weather data, may also change. Through building computer simulations, this paper evaluates the impact of global warming on the design and performance of air-conditioned office buildings in Australia, including the increased cooling loads imposed by potential global warming and probable indoor temperature increases due to possible undersized air-conditioning system, as well as the possible change in energy use and CO2 emission of Australian office buildings. It is found that the existing office buildings would generally be able to adapt to the increasing warmth of 2030 year Low and High scenarios projections and 2070 year Low scenario projection. However, for the 2070 year High scenario, the study indicates that the existing office buildings, in all capital cities except for Hobart, will suffer from overheating problems. If the energy source is assumed to be the electricity, it is found that in comparison with current weather scenario, the increased energy uses would translate into the increase of CO2 emissions by 0 to 34.6 kg CO2 equivalent/m2, varying with different future weather scenarios and with different locations.
Resumo:
Due to the increasing recognition of global climate change, the building and construction industry is under pressure to reduce carbon emissions. A central issue in striving towards reduced carbon emissions is the need for a practicable and meaningful yardstick for assessing and communicating greenhouse gas (GHG) results. ISO 14067 was published by the International Organization for Standardization in May 2013. By providing specific requirements in the life cycle assessment (LCA) approach, the standard clarifies the GHG assessment in the aspects of choosing system boundaries and simulating use and end-of-life phases when quantifying carbon footprint of products (CFPs). More importantly, the standard, for the first time, provides step-to-step guidance and standardized template for communicating CFPs in the form of CFP external communication report, CFP performance tracking report, CFP declaration and CFP label. ISO 14067 therefore makes a valuable contribution to GHG quantification and transparent communication and comparison of CFPs. In addition, as cradle-to-grave should be used as the system boundary if use and end-of-life phases can be simulated, ISO 14067 will hopefully promote the development and implementation of simulation technologies, with Building Information Modelling (BIM) in particular, in the building and construction industry.
Resumo:
Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285-570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.
Resumo:
Global ocean phytoplankton biomass (C-phyto) and total particulate organic carbon (POC) stocks have largely been characterized from space using passive ocean color measurements. A space-based light detection and ranging (lidar) system can provide valuable complementary observations for C-phyto and POC assessments, with benefits including day-night sampling, observations through absorbing aerosols and thin cloud layers, and capabilities for vertical profiling through the water column. Here we use measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to quantify global C-phyto and POC from retrievals of subsurface particulate backscatter coefficients (b(bp)). CALIOP b(bp) data compare favorably with airborne, ship-based, and passive ocean data and yield global average mixed-layer standing stocks of 0.44 Pg C for C-phyto and 1.9 Pg for POC. CALIOP-based C-phyto and POC data exhibit global distributions and seasonal variations consistent with ocean plankton ecology. Our findings support the use of spaceborne lidar measurements for advancing understanding of global plankton systems.
Resumo:
This paper explores the roles of science and market devices in the commodification of ‘nature’ and the configuration of flows of speculative capital. It focuses on mineral prospecting and the market for shares in ‘junior’ mining companies. In recent years these companies have expanded the reach of their exploration activities overseas, taking advantage of innovations in exploration methodologies and the liberalisation of fiscal and property regimes in ‘emerging’ mineral rich developing countries. Recent literature has explored how the reconfiguration of notions of ‘risk’ has structured the uneven distribution of rents. It is increasingly evident that neoliberal framing of environmental, political, social and economic risks has set in motion overflows that multinational mining capital had not bargained for (e.g. nationalisation, violence and political resistance). However, the role of ‘geological risk’ in animating flows of mining finance is often assumed as a ‘technical’ given. Yet geological knowledge claims, translated locally, designed to travel globally, assemble heterogeneous elements within distanciated regimes of metrology, valuation and commodity production. This paper explores how knowledge of nature is enrolled within systems of property relations, focusing on the genealogy of the knowledge practices that animate contemporary circuits of speculative mining finance. It argues that the financing of mineral prospecting mobilises pragmatic and situated forms of knowledge rather than actuarially driven calculations that promise predictability. A Canadian public enquiry struck in the wake of scandal associated with Bre-X’s prospecting activities in Indonesia is used to glean insights into the ways in which the construction of a system of public warrant to underpin financial speculation is predicated upon particular subjectivities and the outworking of everyday practices and struggles over ‘value’. Reflection on practical investments in processes of standardisation, rituals of verification and systems of accreditation reveal much about how the materiality of things shape the ways in which regional and global financial circuits are integrated, selectively transforming existing social relations and forms of knowledge production.